STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024)

M. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH IV- CHEMISTRY SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : CORDINATION CHEMISTRY

SUBJECT CODE : 23CH/PC/CO24

TIME : 3 HOURS MAX. MARKS: 100

Q. No.	SECTION A (10 x 1 = 10 marks)		
	Answer ALL Questions	CO	KL
1	The magnitude of Δ_0 value depends on		
	(a) Nature of the ligand		
	(b) Charge of the metal ion	1	1
	(c) Principal quantum number of the d electron		
	(d) All the above		
2	The purple colour of $[Ti(H_2O)_6]^{3+}$ is due to the following		
	transition		
	(a) $t_{2g}^{0} e_{g}^{1} \rightarrow t_{2g}^{1} e_{g}^{0}$ (b) $t_{2g}^{3} e_{g}^{0} \rightarrow t_{2g}^{2} e_{g}^{1}$	1	1
	(c) $t_{2g}^{1} e_{g}^{0} \rightarrow t_{2g}^{0} e_{g}^{1}$ (d) $t_{2g}^{3} e_{g}^{1} \rightarrow t_{2g}^{2} e_{g}^{2}$		
3	The lowest energy term for the d ⁵ ion is		
	(a) ${}^{2}D$ (b) ${}^{5}D$ (c) ${}^{3}F$ (d) ${}^{6}S$	1	1
4	The g value for a free electron is	1	
	(a) 2.0023 (b) 2.1023 (c) 2.2023 (d) 2.3023		1
5	When the unpaired electrons are aligned in antiparallel		
	fashion with unequal numbers in the two orientations and		
	net magnetic moment, the resulting material is said to be	1	1
	(a) Antiferromagnetic (b) Ferromagnetic		
	(c) Ferrimagnetic (d) Paramagnetic		
6	The magnetic moment of a substance containing		
	n unpaired electrons is approximately equal to	1	1
	(a) $\sqrt{n(n+1)}$ (b) $\sqrt{n(n+2)}$ (c) $\sqrt{n(n+3)}$ (d) $\sqrt{n(n+4)}$		
7	Nucleophilicity is a		
	(a) Hypothetical term (b) Inert term	1	1
	(c) Kinetic term (d) Thermodynamic term		

8	Hydrolysis reactions are the reverse of		
	(a) Anation reactions (b) Solvolysis reactions	1	1
	(c) Aquation reactions (d) Cross reactions		
9	Which one of the following is an electron transport protein	1	1
	(a) Cytochrome (b) Ferritin (c) Myoglobin (d) Ceruloplasmin	1	1
10	Which one of the following will function as metallobiomolecule		
	having copper as metal center	1	1
	(a) Plastocyanin (b) Transferrin (c) Hemerythrin (d) Siderophores		

Q. No.	$SECTION - B (10 \times 1 = 10 \text{ marks})$	CO	KL
	Answer ALL Questions	CO	KL
11	The ——— considerations involved in the crystal field theory are	2	2
	identical to those in the molecular orbital approach.	2	2
12	The CFSE for a high spin octahedral complex of d ⁵ configuration is	2	2
13	In centrosymmetric molecules, the d orbitals have ——— symmetry.	2	2
14	Orgel diagrams are concerned with the — field complexes.	2	2
15	The ratio of the density of magnetic force lines in the presence of	2	2
	sample to the same density with no sample is called as ———.	2	2
16	The measure of lines of force passing through a unit area of material	2	2
	is called as ———.	2	2
17	Trans influence is a — phenomenon.	2	2
18	The mechanism of intramolecular cis-trans photoisomerization not	2	2
	involving bond rupture are usually called as ——mechanism.		
19	———— is the prosthetic group present in hemoglobin.	2	2
20	The Fe-transport proteins are collectively known as ———.	2	2

Q. No.	SECTION C (4 x 6 = 24 marks) ANSWER ANY FOUR QUESTIONS	СО	KL
21	Illustrate in detail the determination of stability constant of a complex using spectrophotometric method.	3	3
22	Interpret the Orgel diagram for Co ²⁺ ion in tetrahedral and octahedral fields.	3	3
23	Write short notes on magnetic moments of tripositive lanthanide ions.	3	3
24	Photo substitution reactions are also possible through CT transition. Demonstrate.	3	3
25	Interpret the structure and biological function of vitamin B ₁₂ .	3	3

Q. No.	SECTION – D (4 x 8 = 32 marks) ANSWER ANY FOUR QUESTIONS	СО	KL
26	Analyse Jahn-Teller distortion in an octahedral copper(II) complexes.	4	4
27	Examine the ESR spectrum of bis(salicylaldimine)copper(II) complex. Analyse why this complex shows 11 ESR peaks instead of theoretically expected 15 peaks.	4	4
28	Examine the spin-orbit coupling and the term symbol that results from these considerations.	4	4
29	Analyse the mechanism of acid hydrolysis of cobalt(III) complexes with evidences.	4	4
30	Explain the role of iron-sulphur proteins in electron transfer processes.	4	4

Q. No.	SECTION – E (2 x 12 = 24 marks) ANSWER THE FOLLOWING	СО	KL
31 a	With suitable examples, explain how crystal field factors are used to account for observed site preferences in spinels and stabilization of oxidation states.	5	5
31 b	(or) Appraise the use of Tanabe-Sugano diagram in interpreting the spectra of octahedral Ni(II) complex.		
32 a	(i) Explain the outer sphere electron transfer reaction between [Co(NH ₃) ₅ OH ₂] ³⁺ and [Fe(CN) ₆] ⁴⁻ . (8) (ii) Explain the Marcus theory of electron transfer reaction. (4) (or)	5	5
32 b	Interpret the functioning of hemoglobin and myoglobin in oxygen transport, highlighting the Perutz mechanism.		

