STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted from the academic year 2019-20 and thereafter)

M. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH IV- CHEMISTRY FOURTH SEMESTER

COURSE	:	MAJOR ELECTIVE	
PAPER	:	CORROSION AND ITS PREVENTION	
SUBJECT CODE	:	19CH/PE/CP15	
TIME	:	3 Hours	MAX MARKS: 100

Section – A

Answer ALL the questions: Choose the Correct Answer:

- The value of 2.303RT/F at 323 K is

 (a) 0.0642
 (b) 0.0644
 (c) 0.0641
 (d) 0.0592

 Equilibrium constant of electrochemical reaction represented by the cell: Zn, Zn²⁺ | Cu²⁺,
- 2. Equilibrium constant of electrochemical reaction represented by the cell: Zn, Zn²⁺ | Cu²⁺ Cu with standard EMF of 1.10 V is (a) 3.722×10^{37} (b) 7.578×10^{37} (c) 1.578×10^{37} (d) 1.678×10^{37}
- 3. which of the following metals does not corrode in aerated water? (a) Mg (b) Cu (c) Fe (d) Au
- 4. which of the following does not belong to pitting type?(a) Silver tarnishing(b) Rusting of iron(c) Parting(d) None

Fill in the blanks:

- 5. ----- metal on exposure to oxygen, tends to form surface films.
- 6. Duralumin type alloys on heat treatment undergo ------ type of corrosion.
- 7. Polarisation for H^+ ion reduction at a cathode is called -----.
- 8. Non-rusting of magnificent Iron pillar at New Delhi is attributed to the ------ used in iron making.

State whether True or False:

- 9. Non-ferrous metals do not corrode.
- 10. Concentration cells contain identical electrodes.
- 11. Magnesium alloys are the least susceptible to corrosion.
- 12. Metropolitan Rail systems cause stray-current corrosion in buried pipelines.

Match the following:

13. Copper hull	a. Anodic protection
14. Inhibitor	b. KCl
15. Iron	c. Trisodium phosphate
16. Saturated Calomel electrode	d. Sir Humphry Davy

Answer in a line:

- 17. Corrosion tendency of gold in aerated water is negligible. Why?
- 18. Define over potential.
- 19. What is passive corrosion?
- 20. What is the relation between EMF and free energy?

 $20 \times 1 = 20$ marks

Section – B Answer any FIVE questions $5 \times 8 = 40$ marks

- 21. (a) Describe the working of saturated calomel electrode with its diagram.
 - (b) Calculate the half-cell potential of zinc in 0.01 M ZnCl₂, given that E° = 0.763 V for $Zn^{2+} + 2e^{-} \rightarrow Zn$.
- 22. Derive the Nernst equation for the reaction in a Galvanic cell: $lL + mM \rightarrow pP + qQ$
- 23. Discuss briefly, the theory of pitting corrosion. Mention the principal ways to reduce it.
- 24. Define passivity. Illustrate the effect of fuming nitric acid on iron.
- 25. Explain the steps involved in corrosion rate determination (MPY), giving appropriate equations.
- 26. Mention the different sources of stray-current? Describe the methods to reduce the straycurrent corrosion.
- 27. Describe the short-time tests followed to check the effectiveness of cathodic protection.

Section – C Answer any TWO questions $2 \times 20 = 40$ marks

- 28. (a) How do the factors: (i) alloy composition, (ii) acid concentration, (iii) temperature, and (iv) oxidizer concentration, impact passivation behaviour?
 - (b) Explain: (i) Stress corrosion, and (ii) Sacrificial anode. (16 + 4)
- 29. (a) What is the principle involved in cathodic protection of a corroding metal surface? Explain how impressed current & sacrificial anode cathodic protection are applied, giving examples.
 - (b) State the desirable electrochemical properties of anode alloys. (15 + 5)
- 30. (a) Discuss activation and diffusion controlled processes in mixed potential theory.
 - (b) Explain Tafel plot for Aluminium alloys.
 - (c) Discuss small amplitude cyclic voltammetry (SCAV). (8+6+6)
