STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2019-20 & thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023 **BRANCH IV- CHEMISTRY** THIRD SEMESTER

COURSE	: COR
COUNDE	. CO

PAPER : COORDINATION CHEMISTRY

SUBJECT CODE : 19CH/PC/CO34

TIME **: 3 HOURS** MAX.MARKS:100

> SECTION - A (20x1=20)

Answer all the questions: Choose the correct answer:

1. The colour of the complex [Fe(bpy)]²⁺arised due to

- a) d-d transitions
- b) due to charge transfer from ligand bpy to Fe orbitals
- c) due to charge transfer from Fe²⁺to π^* orbitals of bpy ligand
- d) due to charge transfer from π^* orbitals of bpy ligand to the orbitals of Fe²⁺
- 2. Give a reason for the statement. '[Ni (CN)₄]²⁻ is diamagnetic while [NiCl₄]²⁻ is paramagnetic in nature.'
 - a) In [NiCl₄]²⁻, no unpaired electrons are present while in [Ni (CN)₄]²⁻ two unpaired electrons are present.
 - b) In $[Ni(CN)_4]^{2^{\frac{1}{2}}}$, no unpaired electrons are present while in $[NiCl_4]^{2^{\frac{1}{2}}}$ two unpaired electrons are present.
 - c) [NiCl₄]²⁻ shows dsp² hybridization hence it is paramagnetic.
 - d) [Ni (CN)₄]²⁻ shows sp³ hybridization hence it is diamagnetic.
- 3. Among the following compounds which are both paramagnetic and coloured? a) K₂Cr₂O₇ b) [Co (SO)₄] c) $(NH_4)_2[TiCl_6]$ d) K₃[Cu (CN)₄]
- 4. IUPAC name of [Pt(NH₃)₂Cl(NO₂)] is
 - a) Platinum diamminechloronitrite b) Chloronitrito-N-ammineplatinum (II)
 - c) Diamminechloridonitrito-N-platinum (II) d) Diamminechloronitrito-N-plantinate (II)
- 5. The type of isomerism shown by the complex $[CoCl_2(en)_2]$ is
 - a) Geometrical isomerism b) Coordination isomerism
 - c) Linkage isomerism d) Ionization isomerism
- 6. Magnetic measurements indicate that [Co(H₂O)₆]²⁺ has 3 unpaired electrons. Therefore,

the hybridization of the metal's orbitals in $[Co(H_2O)_6]^{2+}$ is:

- b) sp^2d
- c) dsp^2

d) sp^3d^2

7. In which one of the following species does the transition metal ion have d³ electronic configuration?

- a) $[Cr(NH_3)_6]^{3+}$
- b) $[Co(OH_2)_6]^{2+}$ c) $[CoF_6]^{3-}$
- d) [Fe(CN)₆]³-

- 8. Which one of the following statements is FALSE?
 - a) In an octahedral crystal field, the d electrons on a metal ion occupy the eg set of orbitals before they occupy the t_{2g} set of orbitals.
 - b) Diamagnetic metal ions cannot have an odd number of electrons.
 - c) Low spin complexes can be paramagnetic.
 - d) In high spin octahedral complexes, $\Delta_{\rm oct}$ is less than the electron pairing energy, and is relatively very small.
- 9. The correct order of field strength among the ligands NH₃, en, CN, and CO is
 - a) $NH_3 < en < CN^- < CO$

b) $CN^{-} < NH_{3} < CO < en$

c) en $< CN^- < NH_3 < CO$

- d) $CO < NH_3 < en < CN^-$
- 10. Which of the following has magnesium?
 - a) Chlorophyll
- b) Haemocyanin
- c) Carbonic anhydrase
- d) Vitamin B₁₂
- 11. Which of the following shall form an octahedral complex?

 - a) d⁴ (low spin) b) d⁸ (high spin)
- c) d⁶ (low spin)
- d) All of these
- 12. Pick out the correct statement with respect to [Mn(CN)₄J²
 - a) It is sp²d² hybridised, tetrahedral
- b) It is d²sp3 hybridised, octahedral
- c) It is dsp² hybridised, square planar
- d) It is sp3d² hybridised octahedral
- 13. Acid hydrolysis of octahedral complexes proceeds by:
 - a) SE1

- b) SE2
- c) SN1
- d) SN2
- 14. Which of the following ions has high magnetic moment?
 - a) Cr³⁺

- b) Mn²⁺
- c) Cu²⁺
- d) Co^{3+}

Answer in one or two sentences:

- 15. Give the structure of Vitamin B12
- 16. What is nephlauxetic effect?
- 17. Give one evidence for metal ligand orbital overlap
- 18. How many d-d bands would be expected in the electronic spectrum of an octahedral Cr(III) complex?
- 19. Electronic absorption spectra of lanthanide ions are very sharp. Why?
- 20. Derive the ground term symbol for octahedral Cr³⁺ ion.

SECTION - B

Answer any five questions:

(5x8=40)

- 21. a) What are the limitations of V.B. Theory.
 - b) Explain the optical isomerism of 6 coordination complexes.
- 22. a) Explain the principle of MB spectroscopy and its application for the study of tin compounds
 - b) Explain the ESR Spectra of Copper complexes [Cu(en)₃]²
- 23. a) Explain why Mn (CO)₅ is paramagnetic while Mn₂(CO)₁₀ is diamagnetic
 - b) Write short notes on spin orbit coupling

- 24. a) Discuss about the substitution reaction involved in octahedral complex with an example.
 - b) What is trans effect? Explain with suitable theory.
- 25. Write short notes on Rubredoxins and Ferredoxins.
- 26. Distinguish photo substitution and photo isomerization of cobalt complexes. (4+4)
- 27. Discuss the electronic spectra of lanthanide and actinide complexes. (4+4)

SECTION - C

Answer any Two questions.

(2x20=40)

- 28. a) Write short notes on (a) Spectro chemical series and (b) LCAO method
 - b) Discuss the factors affecting the reactivity of square planar complexes of d⁸ metal ions.
 - c) What is Bohr effect in haemoglobin?
 - d) Explain the terms: (a) Spectra of strong-field ligand complexes (b) Jahn-Teller distortion. (6+6+4+4)
- 29. a) With the Term symbols, draw the Orgel diagram for d² octahedral, d⁴ tetrahedral complexes.
 - b) Discuss the effect of temperature on the magnetic susceptibility of transition metal complexes
 - c) Explain the Taube mechanism of inner sphere electron transfer reaction in metal complexes
 - d) Describe the structural aspects and functions of haemoglobin. (6+4+6+4)
- 30. a) Explain the trans effect in square planar complex.
 - b) What is Na⁺ /K⁺ pump? How does it function?
 - c) Discuss the structure and function of metallo porphyrin in the transport and storage of oxygen with hemoglobin as an example.
 - d) Draw the Tanabe-Sugano diagram for a d^3 complex (4+6+6+4)
