STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI –600 086 (For candidates admitted from the academic year 2023 – 2024)

M. Sc. DEGREE EXAMINATION, APRIL 2024 BIOINFORMATICS SECOND SEMESTER

COURSE : CORE

PAPER : MOLECULAR BIOLOGY

SUBJECT CODE : 23BI/PC/MB24

TIME : 3 HOURS MAX. MARKS: 100

Q. No.	SECTION A (10 x 1=10)	CO	KL
	All questions to be answered (Objective type)		
1	Transcription of each set of rRNA genes by RNA	CO1	K1
	polymerase I produces		
	a) a single 45S rRNA precursor molecule		
	b) a single 5S rRNA precursor molecule		
	c) a single 18S rRNA precursor molecule		
	d) a single 28S rRNA precursor molecule		
2	DNA replication occurs in	CO2	K2
	a) S phase b) G phase c) G2 phase d) M phase		
3	The amino acids for protein synthesis is activated by the	CO1	K1
	enzyme		
	a) rRNA synthetase b) aminoacyl-tRNA synthetase		
	c) tRNA synthetase d) aminoacyl-mRNA synthetase		
4	RNA polymerase holoenzyme initiates transcription which	CO2	K2
	involves		
	a) recognition of the -10 sequence and -35 sequence		
	b) recognition of the -10 sequence only		
	c) recognition of the -35 sequence only		
	d) none of the above		
5	Unwinding of DNA is done by	CO1	K1
	a) Helicase b) ligase		
	c) Hexonuclease d) Topoisomerase		
6	Of the different possible codons, specify amino	CO2	K2
	acids and signal stop.		
	a) 20, 17, 3 b) 180, 20, 60 c) 64, 61, 3 d) 61, 60, 1		
7	During translation, which site in the ribosome allows for	CO1	K1
	tRNA molecules to enter the complex?		
	a) A site b) E site c) R site d) P site		
8	When studying a human virus in the laboratory, the best way	CO2	K2
	to culture the virus would be to use:		
	a) Bacteria b) Mice		
	c) Chicken eggs d) Human cell culture		
9	Normal cells can be converted to cancer cells by treatment	CO1	K1
	with		
	a) carcinogenic compounds b) endonucleases		
	c) exonucleases d) kinases		
10	Endocrine messengers are also called	CO2	K2
	a) hormones b) receptors c) antibody d) antigen		

Q. No.	SECTION B $(10 \times 2 = 20)$	CO	KL
	Answers in about 50 words		
11	Types of DNA	CO3	K3
12	Crossing over	CO4	K4
13	Chloroplast genome	CO3	K3
14	Prions	CO4	K4
15	Okazaki fragments	CO3	K3
16	RNA editing	CO4	K4
17	Ribosomes	CO3	K3
18	Gene silencing	CO4	K4
19	Signaling molecules	CO3	K3
20	G-protein coupled receptors	CO4	K4
Q. No.	SECTION C (4 x 10= 40)	CO	KL
	Answer in about 600 words - Internal choice		
21	a) Explain the types and organisation of chromosomes.	CO4	K4
	OR		
	b) Illustrate the stages of mitosis and meiosis.		
22	a) Discuss the significance of bacterial genetics.	CO5	K5
	OR		
	b) Brief the mechanism of DNA replication in prokaryotes.		
23	a) Give a detailed account on operons with examples.	CO4	K4
	OR		
2.4	b) Describe the mRNA transcription in brief.	G0.7	77.5
24	a) Write about genetic basis of cancer.	CO5	K5
	OR		
0 N	b) Discuss the post translational modifications.	CO	TZT
Q. No.	SECTION D (2x 15=30)	CO	KL
25	Answer any TWO questions in about 1200 words	CO5	I/C
25	Elaborate the types of transposons and its mechanism of action.	CO5	K6
26	Comment on the following:	CO5	K6
20	i) DNA methylation ii)Viral genome iii) Histone	003	Kυ
	modification		
27	Explain the translational regulation in eukaryotes.	CO5	K6
28			
28	Discuss the oncogenesis and immunotherapy in detail.	CO5	K6
