STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2023 – 2024)

M.Sc., DEGREE EXAMINATION NOVEMBER 2023 PHYSICS FIRST SEMESTER

COURSE	:	ELECTIVE
PAPER	:	ASTROPHYSICS
SUBJECT CODE	:	23PH/PE/AP15
TIME	:	3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A	CO	KL
-	Answer ALL the questions: (10 x 3 marks = 30 marks)		
1.	Define galactic coordinate system.		K1
2.	What is apparent and absolute magnitude?		K1
3.	Mention the significance of HR diagram.		K1
4.	Distinguish color temperature and effective temperature of stars.		K2
5.	What are the different causes of stellar opacity?		K2
6.	What is Schwarzchild radius of star?		K2
7.	Write a note on main sequence star.		K2
8.	What is nuclear time scale?		K3
9.	What is stellar nucleosynthesis?		K3
10.	Mention the importance of helioseismology.	CO3	K3
Q. No.	SECTION B	CO	KL
-	(30 marks)		
	PART A		
	Answer any TWO questions: (2 x 5 = 10 marks)		
11.	Describe the ecliptic system of coordinates for a star.	CO3	K3
12.	Derive the fundamental equation of stellar structure.	CO3	K3
13.	Write a brief note on the effect of hydrogen depletion in stars.	CO3	K3
	PART B	CO	KL
	Answer any FOUR questions: (4 x 5 marks = 20 marks)		
14.	Explain the trigonometric parallax of a star.	CO4	K4
15.	Obtain the stellar temperature of star from Maxwell law of distribution of velocities.	CO4	K4
16.	State and explain Russel – Vogt theorem.	CO4	K4
17.	Obtain the Schoenberg- Chandrasekhar limit of an isothermal	CO4	K4
	core.		
18.	Elucidate the comprehensive theory of nucleosynthesis.		K4
Q. No.	SECTION C	CO	KL
	Answer the following: (2 x 20 marks = 40 marks)		
19.	a) Explain with neat diagrams the method of determining the	CO5	K5
	coordinates of star in the local equatorial system and universal		
	equatorial system. (12 Mark)		
	b) Explain the method of determining the distance of stellar		
	objects by cluster parallax method. (8 Mark)		

	OR		
	c) Explain binary stars and its classification in detail. (10 Mark) d)Discuss the Eddington's standard model for the main sequence stars and obtain mass luminosity relation. (10 Mark)	CO5	К5
20.	 a) State and prove virial theorem and explain its application to an isothermal gas sphere. (12 Mark) b) Obtain an expression of Jean criterion for star formation. (8 Mark) 	CO5	K5
	OR		
	 c) Obtain an expression for the rate of reaction in stellar structure with specific reference to CN cycle. (10 Mark) d) Write and explain pp cycle of reactions in detail. (10 Mark) 	CO5	K5
