STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2023 – 2024)

M.Sc., DEGREE EXAMINATION NOVEMBER 2023 PHYSICS FIRST SEMESTER

COURSE : MAJOR CORE PAPER : ELECTRONICS SUBJECT CODE : 23PH/PC/EL14

TIME : 3 HOURS MAX. MARKS : 100

Q. No.	SECTION A	CO	KL
	Answer ALL the questions: (10x 3=30 marks))	
1	Define the current gains β and α_F and write the relation	CO1	K1
	connecting them.		
2	What is a race-around problem of a JK flip-flop? How is it	CO1	K1
	eliminated in JK master slave flip flop?		
3	Define the terms: (i) input offset voltage and (ii) CMRR	CO1	K1
4	Illustrate how MOSFET acts as a switch.	CO2	K2
5	Outline the difference between machine cycle and	CO2	K2
	instruction cycle.		
6	List the control signals in PPI 8255.	CO2	K2
7	Draw the circuit diagram of a monostable multivibrator	CO2	K2
	using a 555 timer.		
8	Model a DTL type of positive logic AND gate and describe	CO3	K3
	its working briefly.		
9	Compare the instructions SUB B and CMP B.	CO3	K3
10	Distinguish between programmable and non-programmable	CO3	K3
	I/O ports.		
Q. No.	SECTION B (30 marks)	CO	KL
	PART A		
	(PROBLEM SECTION)		
	Answer any TWO questions: $(2x 5 = 10 \text{ marks})$		
11	The data sheet of a JFET gives the following information:	CO3	K3
	I_{DSS} =3mA, $V_{GS(off)}$ =-6V and $g_{m(max)}$ =5000 μ S. Apply these		
	data to find the transconductance for V_{GS} =-4V and drain		
	current I _D at this point.		
12	Construct a second-order low-pass filter with a cutoff	CO3	K3
	frequency of 2 kHz.		
13	Organize the port in PPI 8255 for the control word 89 _H and	CO3	K3
	explain.		
	PART - B		
	Answer any FOUR questions: $(4x 5 = 20 \text{ marks})$		
14	Explain the function of SCR full wave rectifier.	CO4	K4
15	Compare some important parameters of TTL and CMOS	CO4	K4
	circuits.		
16	Draw the timing diagram for memory read cycle and explain	CO4	K4
	it.		
17	it. Analyze the different addressing modes with one example in	CO4	K 4

18	Examine the BSR mode function with the necessary control	CO4	K4
	register.		
Q. No.	SECTION C	CO	KL
	Answer the following: (2 x20=40 marks)		
19.	(a) Draw the circuit diagram of a single-stage CE transistor amplifier. Explain the biasing and function of each component. (10 marks) (b) Discuss the d.c and a.c equivalent circuits of a CE transistor amplifier and derive an expression for the voltage	CO5	K5 K6
	gain from its a.c equivalent circuit. (10 marks)		
	(OR)		
20.	(c) Draw the circuit of a 4-bit binary ripple counter using JK flip flops and explain its working. (10 marks) (d) Construct a serial shift register using D flip flops and explain its working. (10 marks) (a) Design a circuit for an analog computer to solve the given simultaneous equations: x-2y=3 and 2x+3y=-1. (10 marks) (b) Build the internal block diagram for different I/O modes in \$255. Diagram in datail.	CO5	K5 K6
	in 8255, Discuss in detail. (10 marks)		
	(OR)		
	(c) Write an assembly level language program to convert any given BCD number to binary number.	CO5	K5 K6
	(d) Design a circuit diagram to explain the interfacing of stepper motor with PPI 8255. (10 marks)		
