STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.

(For candidates admitted during the academic year 2023-2024

M.Sc., DEGREE EXAMINATION NOVEMBER 2023
 PHYSICS
 FIRST SEMESTER

COURSE	$:$ MAJOR CORE
PAPER	$:$ STATISTICAL MECHANICS
SUBJECT CODE	$: 23 P H / P C / S M 14$
TIME	$: 3$ HOURS

MAX. MARKS : 100

Q. No.	SECTION A	CO	KL
	Answer ALL the Questions (10 x $\mathbf{3}=\mathbf{3 0}$ marks)		
1	Define the term equal-e-priori probability. Calculate the equal-e-priori probability of a system with 10^{12} microstates.	CO1	K1
2	Find the volume of a cell in the phase space of a system of 10 noninteracting linear harmonic oscillators.	CO1	K1
3	What is the thermodynamic probability associated with an element of the canonical ensemble with average energy E_{i}.	CO1	K1
4	Determine the canonical partition function of a three level system with energy values given by $\varepsilon, 0-\varepsilon$. From that determine the probability associated with the level with energy 0 .	CO2	K2
5	What is a Slater determinant? Write down the Slater determinant of a two particle Fermion system.	CO2	K2
6	Under what conditions a system of identical particles can be treated classically?	CO2	K2
7	Why do Bosons condense while Fermions do not?	CO2	K2
8	Define chemical potential. Why should it be negative for Bosons and zero for photons?	CO3	K3
9	Define Fermi temperature. Calculate the Fermi temperature of a system with a Fermi energy of 3.2 eV .	CO3	K3
10	Why does electronic heat capacity dominate over lattice heat capacity at very small temperatures?	$\mathrm{CO3}$	K3
Q. No.	SECTION B (30 marks)	CO	KL
	PART A (PROBLEM SECTION) Answer any TWO Questions: ($2 \times 5=10$ marks)		
11	Construct the density matrices of two systems - one consisting of a superposition of vacuum state $\|0\rangle$ and $\|1\rangle$ and the other a homogeneous mix of $\|0\rangle$ and $\|1\rangle$ of equal weight. Establish that $\rho^{2}=\rho$ for pure states and $\rho^{2}<1$ for mixed states.	CO 3	K3
12	Consider a Boson system with four energy levels of energies, $0, \varepsilon, 2 \varepsilon, 3 \varepsilon$. Their degeneracies are respectively $g_{0}=1, g_{\varepsilon}=2, g_{2 \varepsilon}=3, g_{3 \varepsilon}=4$. If there are 10 particles in the system, find the number of ways these particles can be distributed among the energy levels to have a total energy of 12ε. Find the most probable distribution $\left\{n_{i}\right\}$. Also determine the entropy corresponding to that distribution.	CO3	K3
13	If $E_{1}=1.8 \mathrm{eV}$ is the ground state energy of a system of 10 electrons in a one dimensional box of width a, calculate its Fermi energy, Fermi momentum and average energy of the system.	CO 3	K3

