STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2023 – 24)

M. Sc. DEGREE EXAMINATION, NOVEMBER 2023 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	CORE	
PAPER	:	ORDINARY DIFFERENTIA	L EQUATIONS
SUBJECT CODE	:	23MT/PC/OD14	
TIME	:	3 HOURS	MAX.

Q. No. SECTION A $(5 \times 2 = 10)$ CO KL Answer ALL questions 1. Define linear dependence. 1 1 2. What is meant by fundamental matrix? 1 1 State any two properties of Bessel's function. 3. 1 1 4. Write down the Lipschitz condition. 1 1 5. Define regular linear boundary value problem. 1 1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
-	Answer ALL questions		
6.	The Wronskian of 1, t and t^2 is	2	2
7.	(a) 1 (b) -1 (c) 2 (d) -2 The second approximate solution of $x' = x^2$, $x(0) = 1$, as per Picard's successive approximation method is	2	2
8.	(a) 1 (b) $1 + t$ (c) $1 - t$ (d) t^2 When a linear equation $x''' - 4x'' + 10x' - 2x = 0$ is transformed	2	2
0.	to linear system $x' = Ax$, where A is (a) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -10 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -10 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & -5 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 1 & -5 & 2 \end{bmatrix}$		2
9.	Which of the following is not a regular singular point of the equation $t(t-1)^2(t+3)x'' + t^2x' - (t^2+t-1)x = 0?$ (a)1 (b) 0 (c) -2 (d) none of these	2	2
10.	When p is an integer, $J_{-p}(t) =$	2	2
	(a) $J_P(t)$ (b) $pJ_P(t)$ (c) $(-1)^p J_P(t)$ (d) $-J_P(t)$		
11.	(a) $J_P(t)$ (b) $pJ_P(t)$ (c) $(-1)^p J_P(t)$ (d) $-J_P(t)$ Find the general solution of $x'' - 2x' - 3x = 0$. (a) $C_1 e^{3t} + C_2 e^{-t}$ (b) $C_1 e^{-3t} + C_2 e^t$ (c) $C_1 e^{-3t} + C_2 e^{-t}$ (d) none of these	2	2
12.	Let f be a periodic with period ω . A solution x of $x' = Ax + f(t)$,	2	2
	$t \in (-\infty, \infty) \text{ is periodic of the period } \omega \text{ if and only if} \\ (a) x(0) = x(1) \\ (b) x(0) = x(\omega) \\ (c) x(1) = x(\omega) \\ (d) x(-\infty) = x(\infty) \\ \text{Let } f: [t_0, \infty] \to [0, \infty] \text{ be a continuous function and } k > 0 \text{ be a} \\ \end{cases}$		
13.	Let $f:[t_0,\infty] \to [0,\infty]$ be a continuous function and $k > 0$ be a constant. If $f(t) \le k \int_{t_0}^t f(s) ds$, $t \ge t_0$, then which of the following holds? (a) $f(t) > 0$ (b) $f(t) < 0$ (c) $f(t) = 0$ (d) none	2	2

MARKS: 100

14.	All the eigenv	alues of Strui	m-Liouville problem	n are		2	2
	(a) real (b) complex	(c) mixed real and	complex (d	l) none		
15.	The boundary	conditions x	(A) = x(B) and $x'(A) = x(B)$	(A) = x'(B) as	e known	2	2
	as (a) initial	(b) periodic	(c) singular	(d) non sing	gular		

Q. No.	SECTION C $(2 \times 15 = 30)$ Answer ANY TWO questions	CO	KL
16.	Let $b_1, b_2,, b_n: I \to \mathbb{R}$ be real continuous functions in the <i>n</i> -th order homogeneous differential equation $L(x) = 0$. Prove that $\varphi_1, \varphi_2,, \varphi_n$ are <i>n</i> linearly independent solutions of $L(x) = 0$ on I iff the Wronskian of $\varphi_1, \varphi_2,, \varphi_n$ is non-zero for every $t \in I$. In addition, apply this to the equation $x'' - \frac{2}{t^2}x = 0, 0 < t < \infty$.	3	3
17.	Formulate a unique solution for a linear system $x' = A(t)x, x(t_0) = x_0.$	3	3
18.	Obtain the linearly independent solutions of Legendre equation.	3	3
19.	Derive the Picard's theorem.	3	3

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
20.	Consider a linear system $x' = A(t)x$ where $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$,	4	4
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix}$. Determine the fundamental matrix.		
21.	Explain the existence of solution of initial first order differential equation in the large.	4	4
22.	Derive the generating function and integral representation of Bessel function.	4	4
23.	Prove that $x(t)$ is a solution of $L(x(t)) + f(t) = 0$ if and only if $x(t) = \int_{a}^{b} G(t,s)f(s)ds$ where $G(t,s)$ Green's function.	4	4

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
24.	Explain the Abel's formula.	5	5
25.	Let $x' = A(t)x$ be a linear system where $A: I \to M_n(R)$ is continuous. Suppose a matrix Φ satisfies the system, establish $(\det \Phi)' = (tr A)(\det \Phi).$	5	5
26.	Derive the orthogonal property of Legendre polynomial.	5	5
27.	Evaluate the solution of the equation $x' = -x$, $x(0) = 1$, $t \ge 0$, by Picard's successive approximation method and verify with analytical method.	5	5

##