STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted during the academic year 2023-24)
M. Sc. DEGREE EXAMINATION, NOVEMBER 2023

BRANCH I - MATHEMATICS
FIRST SEMESTER

COURSE	$:$ CORE	
PAPER	$:$ ORDINARY DIFFERENTIAL EQUATIONS	
SUBJECT CODE	$:$ 23MT/PC/OD14	
TIME	$: 3$ HOURS	

Q. No.	SECTION A (5 $\times \mathbf{2}=\mathbf{1 0})$ Answer ALL questions	CO	KL
1.	Define linear dependence.	1	1
2.	What is meant by fundamental matrix?	1	1
3.	State any two properties of Bessel's function.	1	1
4.	Write down the Lipschitz condition.	1	1
5.	Define regular linear boundary value problem.	1	1

Q. No.	SECTION B ($10 \times 1=10$) Answer ALL questions	CO	KL
6.	The Wronskian of $1, t$ and t^{2} is (a) 1 (b) -1 (c) 2 (d) -2	2	2
7.	The second approximate solution of $x^{\prime}=x^{2}, x(0)=1$, as per Picard's successive approximation method is (a) 1 (b) $1+t$ (c) $1-t$ (d) t^{2}	2	2
8.	When a linear equation $x^{\prime \prime \prime}-4 x^{\prime \prime}+10 x^{\prime}-2 x=0$ is transformed to linear system $x^{\prime}=A x$, where A is (a) $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -10 & 2\end{array}\right]$ (b) $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -10 & 4\end{array}\right]$ (c) $\left[\begin{array}{ccc}0 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & -5 & 1\end{array}\right]$ (d) $\left[\begin{array}{ccc}0 & 2 & 0 \\ 0 & 0 & 2 \\ 1 & -5 & 2\end{array}\right]$	2	2
9.	Which of the following is not a regular singular point of the equation $t(t-1)^{2}(t+3) x^{\prime \prime}+t^{2} x^{\prime}-\left(t^{2}+t-1\right) x=0$? (a) 1 (b) 0 (c) -2 (d) none of these	2	2
10.	When p is an integer, $J_{-P}(t)=$ (a) $J_{P}(t)$ (b) $p J_{P}(t)$ (c) $(-1)^{p} J_{P}(t)$ (d) $-J_{P}(t)$	2	2
11.	Find the general solution of $x^{\prime \prime}-2 x^{\prime}-3 x=0$. (a) $C_{1} e^{3 t}+C_{2} e^{-t}$ (b) $C_{1} e^{-3 t}+C_{2} e^{t}$ (c) $C_{1} e^{-3 t}+C_{2} e^{-t}$ (d) none of these	2	2
12.	Let f be a periodic with period ω. A solution x of $x^{\prime}=A x+f(t)$, $t \in(-\infty, \infty)$ is periodic of the period ω if and only if (a) $x(0)=x(1)$ (b) $x(0)=x(\omega)$ (c) $x(1)=x(\omega)$ (d) $x(-\infty)=x(\infty)$	2	2
13.	Let $f:\left[t_{0}, \infty\right] \rightarrow[0, \infty]$ be a continuous function and $k>0$ be a constant. If $f(t) \leq k \int_{t_{0}}^{t} f(s) d s, t \geq t_{0}$, then which of the following holds? (a) $f(t)>0$ (b) $f(t)<0$ (c) $f(t)=0$ (d) none	2	2

14.	All the eigenvalues of Strum－Liouville problem are （a）real （b）complex （c）mixed real and complex （d）none				2	
15.	The boundary conditions $x(A)=x(B)$ and $x^{\prime}(A)=x^{\prime}(B)$ are known as （a）initial （b）periodic （c）singular （d）non singular					

Q．No．	SECTION C $(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0})$ Answer ANY TWO questions	CO	KL
16.	Let $b_{1}, b_{2}, \ldots, b_{n}: I \rightarrow \mathbb{R}$ be real continuous functions in the n－th order homogeneous differential equation $L(x)=0$. Prove that $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ are n linearly independent solutions of $L(x)=0$ on I iff the Wronskian of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ is non－zero for every $t \in I$. In addition，apply this to the equation $x^{\prime \prime}-\frac{2}{t^{2}} x=0,0<t<\infty$.	3	3
17.	Formulate a unique solution for a linear system $x^{\prime}=A(t) x, x\left(t_{0}\right)=x_{0}$.	3	3
18.	Obtain the linearly independent solutions of Legendre equation．	3	3
19.	Derive the Picard＇s theorem．	3	3

Q．No．	SECTION D $(2 \times 15=30)$ Answer ANY TWO questions	CO	KL
20.	Consider a linear system $x^{\prime}=A(t) x$ where $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6\end{array}\right]$. Determine the fundamental matrix．	4	4
21.	Explain the existence of solution of initial first order differential equation in the large．	4	4
22.	Derive the generating function and integral representation of Bessel function．	4	4
23.	Prove that $x(t)$ is a solution of $L(x(t))+f(t)=0$ if and only if $x(t)=\int_{a}^{b} G(t, s) f(s) d s$ where $G(t, s)$ Green＇s function．	4	4

Q．No．	SECTION E $(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$ Answer ANY TWO questions	CO	KL
24.	Explain the Abel＇s formula．	5	5
25.	Let $x^{\prime}=A(t) x$ be a linear system where $A: I \rightarrow M_{n}(R)$ is continuous． Suppose a matrix Φ satisfies the system，establish $(\text { det } \Phi)^{\prime}=(\operatorname{tr} A)($ det $\Phi)$.	5	5
26.	Derive the orthogonal property of Legendre polynomial．	5	5
27.	Evaluate the solution of the equation $x^{\prime}=-x, x(0)=1, t \geq 0$, by Picard＇s successive approximation method and verify with analytical method．	5	5

