STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2023 – 24)

M. Sc. DEGREE EXAMINATION, NOVEMBER 2023 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	CORE
PAPER	:	ABSTRACT ALGEBRA
SUBJECT CODE	:	23MT/PC/AA14
TIME	:	3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ALL questions		
1.	Define conjugacy relation on a group G and what is the number of	1	1
	conjugacy classes of the multiplicative group $G = \{1, -1, i, -i\}$.		
2.	Define a unit in a ring and write down all the units of the ring Z of	1	1
	integers.		
3.	Define the content of a polynomial with integer coefficients.	1	1
4.	Define a finite extension and an algebraic extension of a field.	1	1
5.	Define a normal extension of a field and give an example.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
б.	Which of the following is/are true	2	2
	(a). The number of conjugacy classes of the symmetric group S_4 is 5.		
	(b). There is no non-abelian group of order 169.		
	(c). Any group G of even order contains an element $a \neq e$ in G such		
	that $a^{-1} = a$		
	(d). Any group G of order 625 contains an element $a \neq e$ such that		
	$ax = xa$, for every $x \in G$		
7.	Which of the following is/are true	2	2
	(a). There is a subgroup of order 8 in a group of order 56.		
	(b). The number of non-isomorphic abelian groups of order 625 is 4.		
	(c). There is a unique abelian group of order 31.		
	(d). Any two subgroups of order 4 in a group of order 36 are		
	conjugates.		

8.	Which of the following statement(s) is/are false.	2	2
0.	(a). $3 + 4i$ is a unit in the ring Gaussian integers	2	-
	(b). The units of a field F are the non-zero elements of F.		
	(c). Any field is an Euclidean ring.		
	(d). The ring of integers is a unique factorization domain.		
9.	Which of the following statement(s) is/are false	2	2
γ.	(a). The numbers 4 and -4 are associates in the ring Z of integers.	2	2
	(b). The ideal generated by a prime element of an Euclidean ring <i>R</i> is a		
	maximal ideal of <i>R</i> .		
	(c). There are Euclidean rings without multiplicative identity element.		
	(d). The ring Z of integers is a principal ideal ring.		
10.	Which of the following statement(s) is/are true.	2	2
10.	(a). There is an irreducible polynomial of degree 3 over the field of real	2	
	numbers.		
	(b). The ideal in the ring $R[X]$ of polynomials in X over the field R of		
	real numbers generated by the polynomial $X^2 + 1$ is a maximal		
	ideal of $R[X]$.		
	(c). The polynomial $X^2 - 2$ is irreducible over the field <i>R</i> of real		
	numbers.		
	(d). The ring <i>Z</i> [<i>X</i>], of polynomials in <i>X</i> over the ring <i>Z</i> of integers,		
	is an integral domain		
11.	Which of the following statement(s) is/are true.	2	2
	(a). The polynomial ring $F[X]$ over the field F is a principal ideal ring.	-	-
	(b). The polynomial ring $J_n[X]$ in the variable X over the ring J_n of		
	residue classes of integers modulo n is an integral domain.		
	(c). A product of two primitive polynomials is primitive.		
	(d). The polynomial $X^2 + X + 1$ is irreducible over the field of real		
	numbers.		
12.	Which of the following statement(s) is/are true	2	2
	(a). There is no field <i>F</i> such that $R \subset F \subset C$, where <i>R</i> is the field of		
	real numbers and C is the field of complex numbers.		
	(b). Any finite extension of a field F is an algebraic extension of F .		
	(c). Any algebraic extension of a field F is a finite extension of F.		
	(d). The field R of real numbers is a finite extension of the field Q of		
	rational numbers.		

13.	Which of the following statement(s) is/are true	2	2
	(a). Any irreducible polynomial over the field <i>R</i> of real numbers has		
	distinct roots.		
	(b). An irreducible polynomial over the field Q of rational numbers has		
	multiple roots.		
	(c). Any simple extension of a field <i>F</i> is a finite extension of <i>F</i> .		
	(d). The splitting field of the polynomial $X^2 - 2$ over the field Q of		
	rational numbers is the field <i>R</i> of real numbers.		
14.	Which of the following statement(s) is/are false	2	2
	(a). The field of complex numbers is a normal extension of the field of		
	real numbers.		
	(b). The symmetric group S_6 is solvable.		
	(c). Any homomorphic image of a solvable group is solvable.		
	(d). The field $Q(\sqrt{2})$ is a normal extension of the field Q of rational		
	numbers.		
15.	Which of the following statement(s) is/are false?	2	2
	(a). The splitting field of a polynomial over a field F is always a		
	normal extension of F.		
	(b). If C is the field of complex numbers and R is the field of real		
	numbers,		
	then $G(C, R)$ is a group of order 2.		
	(c). If C is the field of complex numbers and R is the field of real		
	numbers, then the fixed field of $G(C, R)$ is C.		
	(d). The set of automorphisms of a field K is a group under		
	composition of functions.		
L	1	I	I

Q. No.	$SECTION C (2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
16.	Prove that any finite abelian group is a direct product of cyclic groups.	3	3
17.	Prove that the ring of Gaussian integers is a Euclidean ring.	3	3
18.	(a). State and prove Eisenstein's criterion for irreducibility of	3	3
	polynomial over the field of rational numbers.		
	(b). For a prime p , prove that the polynomial		
	$X^{p-1} + X^{p-2} + \dots + X + 1$ is irreducible over the field of rational		
	numbers. (10+5)		

19.	(a). If a rational number r is an algebraic integer, prove that r must be	3	3
	an ordinary integer.		
	(b). If a , b in K are algebraic over F of degrees m and n , respectively,		
	and if m and n are relatively prime, prove that $F(a, b)$ is of degree		
	$mn \text{ over } F. \tag{5+10}$		

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
20.	State and prove the fundamental theorem of Galois theory	4	4
21.	(a). If $p(x)$ is a polynomial in $F[x]$ of degree $n \ge 1$ and is	4	4
	irreducible over F , then prove that there is an extension E of F , such		
	that $[E:F] = n$, in which $p(x)$ has a root.		
	(b). Find the splitting field of the polynomial $X^3 - 2$ over the field of		
	rational numbers. Also find the degree of the splitting field over		
	the field Q rational numbers. (8+7)		
22.	Prove that any group of order 11^2 . 13^2 is abelian	4	4
23.	Prove that two abelian groups of order p^n are isomorphic if and only if	4	4
	they have the same invariants.		

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
24.	Find the conjugacy classes of the Symmetric group S_{3} . Also find the	5	5
	normalizer of each element of the symmetric group S_3 . Further verify		
	the class equation for the symmetric group S_3		
25.	Prove that a necessary and sufficient condition that the element <i>a</i> in the	5	5
	Euclidean ring be a unit is that $d(a) = d(1)$.		
26.	Prove that the element $a \in K$ is algebraic over F if and only if $F(a)$ is a	5	5
	finite extension of <i>F</i> .		
27.	Find the group $G(K, Q)$, where Q is the field of rational numbers and	5	5
	$K = Q(\sqrt[3]{2})$, where $\sqrt[3]{2}$ is the real cube root of 2. Also find the fixed		
	field of $G(K,Q)$.		

##