STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted during the academic year 2023-24)
M. Sc. DEGREE EXAMINATION, NOVEMBER 2023

BRANCH I - MATHEMATICS
FIRST SEMESTER

SUBJECT CODE
 TIME

COURSE : CORE
PAPER : ABSTRACT ALGEBRA
: 23MT/PC/AA14
: 3 HOURS
MAX. MARKS : 100

Q. No.	SECTION A (5 $\times 2=10)$ Answer ALL questions	CO	KL
1.	Define conjugacy relation on a group G and what is the number of conjugacy classes of the multiplicative group $G=\{1,-1, i,-i\}$.	1	1
2.	Define a unit in a ring and write down all the units of the ring Z of integers.	1	1
3.	Define the content of a polynomial with integer coefficients.	1	1
4.	Define a finite extension and an algebraic extension of a field.	1	1
5.	Define a normal extension of a field and give an example.	1	1

Q. No.	SECTION B $(\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0})$ Answer ALL questions	CO	KL
6.	Which of the following is/are true (a). The number of conjugacy classes of the symmetric group S_{4} is 5. (b). There is no non-abelian group of order 169. (c). Any group G of even order contains an element $a \neq e$ in G such that $a^{-1}=a$ (d). Any group G of order 625 contains an element $a \neq e$ such that $a x=x a$, for every $x \in G$	2	2
7.	Which of the following is/are true (a). There is a subgroup of order 8 in a group of order 56. (b). The number of non-isomorphic abelian groups of order 625 is 4. (c). There is a unique abelian group of order 31. (d). Any two subgroups of order 4 in a group of order 36 are conjugates.	2	2

8.	Which of the following statement(s) is/are false. (a). $3+4 i$ is a unit in the ring Gaussian integers (b). The units of a field F are the non-zero elements of F. (c). Any field is an Euclidean ring. (d). The ring of integers is a unique factorization domain.	2	2
9.	Which of the following statement(s) is/are false (a). The numbers 4 and -4 are associates in the ring Z of integers. (b). The ideal generated by a prime element of an Euclidean ring R is a maximal ideal of R. (c). There are Euclidean rings without multiplicative identity element. (d). The ring Z of integers is a principal ideal ring.	2	2
10.	Which of the following statement(s) is/are true. (a). There is an irreducible polynomial of degree 3 over the field of real numbers. (b). The ideal in the ring $R[X]$ of polynomials in X over the field R of real numbers generated by the polynomial $X^{2}+1$ is a maximal ideal of $R[X]$. (c). The polynomial $X^{2}-2$ is irreducible over the field R of real numbers. (d). The ring $Z[X]$, of polynomials in X over the ring Z of integers, is an integral domain	2	2
11.	Which of the following statement(s) is/are true. (a). The polynomial ring $F[X]$ over the field F is a principal ideal ring. (b). The polynomial ring $J_{n}[X]$ in the variable X over the ring J_{n} of residue classes of integers modulo n is an integral domain. (c). A product of two primitive polynomials is primitive. (d). The polynomial $X^{2}+X+1$ is irreducible over the field of real numbers.	2	2
12.	Which of the following statement(s) is/are true (a). There is no field F such that $R \subset F \subset C$, where R is the field of real numbers and C is the field of complex numbers. (b). Any finite extension of a field F is an algebraic extension of F. (c). Any algebraic extension of a field F is a finite extension of F. (d). The field R of real numbers is a finite extension of the field Q of rational numbers.	2	2

13.	Which of the following statement(s) is/are true (a). Any irreducible polynomial over the field R of real numbers has distinct roots. (b). An irreducible polynomial over the field Q of rational numbers has multiple roots. (c). Any simple extension of a field F is a finite extension of F. (d). The splitting field of the polynomial $X^{2}-2$ over the field Q of rational numbers is the field R of real numbers.	2	2
14.	Which of the following statement(s) is/are false (a). The field of complex numbers is a normal extension of the field of real numbers. (b). The symmetric group S_{6} is solvable. (c). Any homomorphic image of a solvable group is solvable. (d). The field $Q(\sqrt{2})$ is a normal extension of the field Q of rational numbers.	2	2
15.	Which of the following statement(s) is/are false? (a). The splitting field of a polynomial over a field F is always a normal extension of F. (b). If C is the field of complex numbers and R is the field of real numbers, then $G(C, R)$ is a group of order 2 . (c). If C is the field of complex numbers and R is the field of real numbers, then the fixed field of $G(C, R)$ is C. (d). The set of automorphisms of a field K is a group under composition of functions.	2	2

Q. No.	SECTION C $(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0})$ Answer ANY TWO questions	CO	KL
16.	Prove that any finite abelian group is a direct product of cyclic groups.	3	3
17.	Prove that the ring of Gaussian integers is a Euclidean ring.	3	3
18.	(a). State and prove Eisenstein's criterion for irreducibility of polynomial over the field of rational numbers. (b). For a prime p, prove that the polynomial $X^{p-1}+X^{p-2}+\ldots+X+1$ is irreducible over the field of rational numbers.	3	3

19.	（a）．If a rational number r is an algebraic integer，prove that r must be an ordinary integer． （b）．If a, b in K are algebraic over F of degrees m and n ，respectively， and if m and n are relatively prime，prove that $F(a, b)$ is of degree $m n$ over F.	3	3
$(5+10)$			

Q．No．	SECTION D（ $2 \times 15=30$ ） Answer ANY TWO questions	CO	KL
20.	State and prove the fundamental theorem of Galois theory	4	4
21.	（a）．If $p(x)$ is a polynomial in $F[x]$ of degree $n \geq 1$ and is irreducible over F ，then prove that there is an extension E of F ，such that $[E: F]=n$ ，in which $p(x)$ has a root． （b）．Find the splitting field of the polynomial $X^{3}-2$ over the field of rational numbers．Also find the degree of the splitting field over the field Q rational numbers．	4	4
22.	Prove that any group of order $11^{2} .13^{2}$ is abelian	4	4
23.	Prove that two abelian groups of order p^{n} are isomorphic if and only if they have the same invariants．	4	4

Q．No．	SECTION E $(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$ Answer ANY TWO questions	CO	KL
24.	Find the conjugacy classes of the Symmetric group $S_{3 .}$ ．Also find the normalizer of each element of the symmetric group S_{3} ．Further verify the class equation for the symmetric group S_{3}	5	5
25.	Prove that a necessary and sufficient condition that the element a in the Euclidean ring be a unit is that $d(a)=d(1)$.	5	5
26.	Prove that the element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F.	5	5
27.	Find the group $G(K, Q)$, where Q is the field of rational numbers and $K=Q(\sqrt[3]{2})$, where $\sqrt[3]{2}$ is the real cube root of 2 ．Also find the fixed field of $G(K, Q)$.	5	

人人人八人人人入

