Solving Differential Equations

〈Your Name〉

1 Introduction

Differential equations are a fundamental topic in mathematics and science. In this document, we will solve a simple first $\&$ second order ordinary differential equation (ODE).

2 First-Order ODE

Consider the following first-order ODE:

$$
\begin{equation*}
\frac{d y}{d x}=2 x \tag{1}
\end{equation*}
$$

We can solve this ODE using separation of variables[1]. Separating the variables y and x, we get:

$$
\frac{d y}{y}=2 x d x
$$

Now, we integrate both sides:

$$
\begin{align*}
\int \frac{1}{y} d y & =\int 2 x d x \\
\ln |y| & =x^{2}+C \tag{2}
\end{align*}
$$

Where C is the constant of integration. We can solve for y :

$$
\begin{equation*}
|y|=e^{x^{2}+C} \tag{3}
\end{equation*}
$$

3 Second-Order ODE

Let's consider a second-order ODE with initial conditions. For example:

$$
\begin{equation*}
y^{\prime \prime}(t)+4 y(t)=0, \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{4}
\end{equation*}
$$

This is a simple linear homogeneous ODE. The general solution[2] of equation (4) can be written as:

$$
y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

References

[1] William E. Boyce and Richard C. DiPrima. (2017). Elementary Differential Equations and Boundary Value Problems, Wiley Publ.
[2] Stanley J. Farlow. (1993). Partial Differential Equations for Scientists and Engineers, Dover Publ.

