STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted during the academic year 2019-20 and thereafter)

M. Sc. DEGREE EXAMINATION, NOVEMBER 2023
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	$:$ CORE
PAPER	$:$ PARTIAL DIFFERENTIAL EQUATIONS
SUBJECT CODE	$:$ 19MT/PC/PD34
TIME	$: ~ 3 ~ H O U R S ~$

SECTION - A

ANSWER ALL THE QUESTIONS:

1. State Cauchy's problem for the first order partial differential equations.
2. Find the characteristics of the hyperbolic equation $3 u_{x x}+10 u_{x y}+3 u_{y y}=0$
3. Write down the Poisson equation.
4. State any two properties of Dirac delta function.
5. State the D'Alembert's solution of the one dimensional wave equation.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. Find the general solution of the differential equation $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z$
7. Reduce the Tricomi equation $u_{x x}+x u_{y y}=0, x \neq 0$ for all x, y to canonical form.
8. Derive the Laplace equation $\nabla^{2} V=0$
9. A one-dimensional infinite region $-\infty<x<\infty$ is initially kept at zero temperature. A heat source of strength g_{s} units, situated at $x=\xi$ releases its heat instantaneously at time $t=\tau$. Determine the temperature in the region for $t>\tau$.
10. Derive one dimensional wave equation.
11. Obtain the solution of the wave equation $u_{t t}=c^{2} u_{x x}$ under the following conditions
(i) $u(0, t)=u(2, t)=0$
(ii) $u(x, 0)=\sin ^{3} \frac{\pi x}{2}$
(iii) $u_{t}(x, 0)=0$
12. Classify and transform the following equation to a canonical form
$\sin ^{2}(x) u_{x x}+\sin (2 x) u_{x y}+\cos ^{2}(x) u_{y y}=x$

SECTION - C

ANSWER ANY THREE QUESTIONS:

13. (a) Find the solution of the equation $z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y)$ passes through the x-axis.
(b) Find the integral surface of the linear partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line $x+y=0, z=1$.
14. (a) Find a complete integral of the partial differential equation $\left(p^{2}+q^{2}\right) x=p z$ and deduce the solution which passes through the curve $x=0, z^{2}=4 y$.
(b) Show that the only integral surface of the equation $2 q(z-p x-q y)=1+q^{2}$ which is circumscribed about the paraboloid $2 x=y^{2}+z^{2}$ is the enveloping cylinder which touches it along its section by the plane $y+1=0$.
15. (a) Find the solution of the Neumann problem for a rectangle.
(b) Determine the solution of the exterior Dirichlet problem for a circle.
16. (a) The ends A and B of a rod, 10 cm in length, are kept at temperatures $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until the steady state condition prevails. Suddenly the temperature at the end A is increased to $20^{\circ} \mathrm{C}$, and the end B is decreased $60^{\circ} \mathrm{C}$. Find the temperature distribution in the rod at time t.
(b) Solve the one-dimensional diffusion equation in the region $0 \leq x \leq \pi, t \geq 0$, subject to the conditions (i) T remains finite as $t \rightarrow \infty$ (ii) $T=0$,

$$
\text { if } x=0 \text { and } \pi \text { for all } t
$$

$$
\text { (iii) At } t=0, T= \begin{cases}x, & 0 \leq x \leq \frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2} \leq x \leq \pi\end{cases}
$$

17. (a) Solve the initial value problem of the wave equation $u_{t t}-c^{2} u_{x x}=f(x, t)$ subject to the initial conditions $u(x, 0)=\eta(x), u_{t}(x, 0)=v(x)$.
(b) Establish the variables separable solution of vibrating string.

asalasacal

