STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20 and thereafter)

M. Sc. DEGREE EXAMINATION, NOVEMBER 2023 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	CORE		
PAPER	:	PARTIAL DIFFERENTIAL EQUATION	NS	
SUBJECT CODE	:	19MT/PC/PD34		
TIME	:	3 HOURS	MAX. MARKS :	100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

 $(5 \times 6 = 30)$

- 1. State Cauchy's problem for the first order partial differential equations.
- 2. Find the characteristics of the hyperbolic equation $3u_{xx} + 10u_{xy} + 3u_{yy} = 0$
- 3. Write down the Poisson equation.
- 4. State any two properties of Dirac delta function.
- 5. State the D'Alembert's solution of the one dimensional wave equation.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 6. Find the general solution of the differential equation $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$
- 7. Reduce the Tricomi equation $u_{xx} + xu_{yy} = 0, x \neq 0$ for all x, y to canonical form.
- 8. Derive the Laplace equation $\nabla^2 V = 0$
- A one-dimensional infinite region -∞ < x < ∞ is initially kept at zero temperature. A heat source of strength g_s units, situated at x = ξ releases its heat instantaneously at time t = τ. Determine the temperature in the region for t > τ.
- 10. Derive one dimensional wave equation.

11. Obtain the solution of the wave equation $u_{tt} = c^2 u_{xx}$ under the following conditions

(i)
$$u(0,t) = u(2,t) = 0$$
 (ii) $u(x,0) = \sin^3 \frac{\pi x}{2}$ (iii) $u_t(x,0) = 0$

12. Classify and transform the following equation to a canonical form $\sin^2(x)u_{xx} + \sin(2x)u_{xy} + \cos^2(x)u_{yy} = x$

SECTION – C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 20 = 60)$

- 13. (a) Find the solution of the equation $z = \frac{1}{2}(p^2 + q^2) + (p x)(q y)$ passes through the *x* -axis.
 - (b) Find the integral surface of the linear partial differential equation $x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z$ which contains the straight line x + y = 0, z = 1.
- 14. (a) Find a complete integral of the partial differential equation $(p^2 + q^2)x = pz$ and deduce the solution which passes through the curve $x = 0, z^2 = 4y$.
 - (b) Show that the only integral surface of the equation $2q(z px qy) = 1 + q^2$ which is circumscribed about the paraboloid $2x = y^2 + z^2$ is the enveloping cylinder which touches it along its section by the plane y + 1 = 0.
- 15. (a) Find the solution of the Neumann problem for a rectangle.(b) Determine the solution of the exterior Dirichlet problem for a circle.
- 16. (a) The ends A and B of a rod, 10 cm in length, are kept at temperatures $0^{\circ}C$ and $100^{\circ}C$ until the steady state condition prevails. Suddenly the temperature at the end A is increased to $20^{\circ}C$, and the end B is decreased $60^{\circ}C$. Find the temperature distribution in the rod at time *t*.
 - (b) Solve the one-dimensional diffusion equation in the region $0 \le x \le \pi, t \ge 0$, subject to the conditions (*i*) *T* remains finite as $t \to \infty$ (*ii*) T = 0,

if x = 0 and π for all t

(*iii*) At
$$t = 0, T = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$$

- 17. (a) Solve the initial value problem of the wave equation $u_{tt} c^2 u_{xx} = f(x, t)$ subject to the initial conditions $u(x, 0) = \eta(x), u_t(x, 0) = v(x)$.
 - (b) Establish the variables separable solution of vibrating string.