STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted from the academic year 2023-2024)

M.A DEGREE EXAMINATION, NOVEMBER 2023

BRANCH III - ECONOMICS
FIRST SEMESTER
COURSE : ELECTIVE
PAPER : MATHEMATICS FOR ECONOMICS
SUBJECT CODE: 23EC/PE/ME15
TIME : 3 HOURS MAX. MARKS: 100

Q. No.	SECTION A PART $-A \quad(2 \times 5=10)$ Answer any TWO out of THREE questions in about 150 words each	CO	KL
1	Find the inverse of A $\left[\begin{array}{cc} 7 & 9 \\ 6 & 12 \end{array}\right]$	1	1
2	Find the First and second order Direct Partial Derivatives $Z=13 x^{2}+6 x y+9 y^{3}$	1	1
3	If Average Cost $=12 t^{2}-18 t+28$ Find TC and MC.	1	1
Q. No.	PART - B (2 X 5 = 10) Answer any TWO out of THREE questions in about 150 words each	CO	KL
4	Explain the concepts of Slack and Surplus Variables.	2	2
5	Evaluate $\int_{2}^{4}\left(5 x^{3}+2 x^{2}+3 x\right) d x$	2	2
6	Find $\mathrm{dy} / \mathrm{dx}$ of $4 \mathrm{x}^{3}-\mathrm{y}^{3}=97$	2	2
Q. No.	\[\) SECTION B PART - A \(\quad(2 \times 8=16)\]Answer any TWO out of THREE questions in about 400 words each	CO	KL
7	Solve by Cramer's Rule : $\begin{array}{ll} 5 x_{1}-2 x_{2}+3 x_{3} & =16 \\ 2 x_{1}+3 x_{2}-5 x_{3} & =2 \\ 4 x_{1}-5 x_{2}+6 x_{3} & =7 \end{array}$	3	3

8	Determine the sign definiteness for matrix A $\left[\begin{array}{cc} 10 & 3 \\ 3 & 4 \end{array}\right]$	3	3
9	Derive Samuelson's Multiplier Accelerator model.	3	3
Q. No.	PART - B $\quad(2 \times 8=16)$ Answer any TWO out of THREE questions in about 400 words each	CO	KL
10	Solve by the Graphical method Minimize $C=20 x+40 y$ Subject to the Constraints $36 x+6 y \geq 108$ $\begin{aligned} & 3 x+12 y \geq 36 \\ & 20 x+10 y \geq 100 \\ & \text { Where } x, y \geq 0 \end{aligned}$	4	4
11	Find the Second order direct Partial Derivatives $Z=(7 x+3 y)^{3}$	4	4
12	The technology matrix of an economic system with two industries is $\left[\begin{array}{ll} 0.50 & 0.30 \\ 0.41 & 0.33 \end{array}\right]$ Test whether the system is viable as per the Hawkins-Simon Condition.	4	4
	SECTION C PART - A $\quad(2 \times 12=24)$ Answer any TWO out of FOUR questions in about 700 words each		
13	Find the profit maximizing level of output, price and profit $\begin{aligned} & \mathrm{Q}_{1}=5200-10 \mathrm{P}_{1} \\ & \mathrm{Q}_{2}=8200-20 \mathrm{P}_{2} \\ & \mathrm{C}=0.1 Q_{1}^{2}+0.1 \mathrm{Q}_{1} \mathrm{Q}_{2}+0.2 Q_{2}^{2}+325 \end{aligned}$	5	5
14	Determine the total demand for industries 1,2 and 3, given the matrix of technical coefficients A and the final demand vector B. $A=\left[\begin{array}{lll} 0.4 & 0.3 & 0.1 \\ 0.2 & 0.2 & 0.3 \\ 0.2 & 0.4 & 0.2 \end{array}\right] \quad B=\left[\begin{array}{l} 140 \\ 220 \\ 180 \end{array}\right]$	5	5
15	Enumerate the various applications of Linear Programming	5	5

16	Calculate the General Solution of the differential equation dy/dt $+3 \mathrm{t}^{2} \mathrm{y}=\mathrm{t}^{2}$	$\mathbf{5}$	$\mathbf{5}$
	Answer any TWO out of FOUR questions in about 700 words each	PART $\mathbf{~ B ~}$	
17	Given the demand function $\mathrm{P}_{\mathrm{d}}=113 \mathrm{Q}^{2}$ and the Supply function $\mathrm{P}_{\mathrm{s}}=(\mathrm{Q}+1)^{2}$ under Pure Competition, Find Consumers' and Producers' Surplus.	$\mathbf{6}$	$\mathbf{6}$
18	A monopolistic firm has the following demand functions for each of its products x and y $\mathrm{x}=72-0.5 \mathrm{P}_{\mathrm{x}}$	$\mathbf{6}$	$\mathbf{6}$
19	$\mathrm{y}=120-\mathrm{P}_{\mathrm{y}}$ The combined cost function is c $=\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}+35$ and the maximum joint production is 40. Find the profit maximizing level of output, price and profit.	Construct an Input -Output Transaction Table and list the limitations of Input -Output analysis.	$\mathbf{6}$
20	Examine the features of Solow Growth Model.	$\mathbf{6}$	$\mathbf{6}$

