STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2023-24)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023 BRANCH IV- CHEMISTRY FIRST SEMESTER

COURSE	: CORE
PAPER	: ADVANCED PHYSICALCHEMISTRY
SUBJECT CODE	: 23CH/PC/PC14
TIME	: 3 HOURS

MAX.MARKS :100

SNO	SECTION A (10 x 1 = 10 marks)	K LEVEL
	Answer ALL Questions	
1.	In an adsorption process if an unimolecular layer is formed then it is	K1
	a) Physisorption b) Chemisorption c) ion exchange d) None	
2.	Solvents can influence reaction rates, conversion and product selectivity by	
	a) directly participating in the reaction steps	
	b) competing with the reactant for interaction with the catalysts,	
	c) changing the relative stabilization of the reactant, the transition state (TS) and/or the	
	product,	
2	d) all of these	17.1
3.	According to molecular collision theory, the reaction is subjected to	K1
	a) Number of molecular collisions of reactant	
	b) Number of collisions between Transition state and reactants	
	c) Number of effective collisions or reactants	
4	d) None	
4.	The ionic strength of a solution of molality m_i and valency of the ion Zi is	
5.	a) $\mu = 1/2 miZi^2$ b) $\mu = \sum miZi^2$ c) $\mu = 1/2 \sum Zi^2$ d) $\mu = 1/2 \sum miZi^2$ Physisorption with increase in temperature	
5.	a) Increases b) decreases c) remains unchanged d) none of these	
6.	phenomena arise from movement of ions in the electric double	
0.	layer under a pore pressure gradient.	
	a) Electrokinetic b) double layer c) Osmosis d) none of these	
7.	The mechanism explains unimolecular reactions that take place in	
	the gas phase.	
	a) Lindemann-Hinshelwood b) Pre-Equilibria	
	c) transition state d) none of these	
8.	In a Hydrogen Oxygen fuel cell, Hydrogen enters through the anode.	
	a) True b) False	
9.	Catalyst changes the equilibrium constant of the reaction	
	a) True b) False	
10.	In a complex photochemical reaction involving a secondary process the	
	quantum yield might exceed 1	
	a) True b) False.	

SNO	SECTION – B (10 x 1 = 10 marks)	K LEVEL
	Answer ALL Questions	
11.	Explain Zeta potential.	K2
12.	Explain the hydrogenation reaction with an example.	K2
13.	What is the significance of exchange current density?	K2
14.	Illustrate chain reaction with an example.	K2
15.	What is a Phenomenological Equation?	K2
16.	Explain microstate	K2

23CH/PC/PC14

/2/

SNO	SECTION C $(4 \times 6 = 24 \text{ marks})$	K LEVEL
	ANSWER ANY FOUR QUESTIONS	
21.	Show pre-equilibrium approximation and steady-state approximation	K3
22.	Demonstrate the physical origin of the kinetic salt effect	K3
23.	How is ensemble applied in statistical thermodynamics,	K3
24.	Clasify electrocapillary measurements and electrocapillary curves? Write the	K3
	application of electrocapillary curves.	
25.	Present Gibbs adsorption isotherm.	K3

SNO	SECTION - D (4 x 8 = 32 marks)	K LEVEL
	ANSWER ANY FOUR QUESTIONS	
26.	Compare Guoy Chapman and Stern Models of double layer.	K4
27.	Outline Potential Energy Surfaces and analyse the following statement: 'Reaction with attractive potential energy surfaces proceeds more efficiently if the energy is translational.'	K4
28.	Investigate Boltzmann parameters using Lagrange's method of undetermined multipliers.	K4
29.	Derive and examine Sackur Tetrode equation for the monoatomic gas.	K4
30.	Examine the explosion behavior of a chain reaction. $H_2+O_2 \longrightarrow 2H_2O$	K4

SNO	SECTION – E (2 x 12 = 24 marks)	
	ANSWER THE FOLLOWING	
31a	Derive Butler- Volmer Equation for one electron transfer and explain the	K5
	significance of symmetry factor β .	
	(OR)	
31b	Compare Maxwell- Boltzmann, Bose-Einstein and Fermi - Dirac statistics.	
32a	Deduce the postulates BET theory. How will you determine the surface area of a solid using BET theory and explain the limitations of this method. (OR)	K5
32b	a) Explain Lindemann-Hinshelwood mechanism for unimolecular reactions. (8 Marks)	
	b) Using steady state approximation devise the rate law for the decomposition of N ₂ O ₅ (4 Marks)	
	$N_2O_5 \longrightarrow NO_2 + NO_3 \qquad k_a$	
	$NO_2 + NO_3 \longrightarrow N_2O_5 \qquad k'_a$	
	$NO_2 + NO_3 \longrightarrow NO_2 + O_2 + NO k_b$	
	$NO + N_2O_5 \longrightarrow NO_2 + NO_2 + NO_2 k_c$	