STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2023-2024)

B.Sc. DEGREE EXAMINATION NOVEMBER 2023 BRANCH III - PHYSICS FIRST SEMESTER

COURSE	: MAJOR – CORE
PAPER	: PROPERTIES OF MATTER AND SOUND
SUBJECT CODE	:23PH/MC/PS14
TIME	:3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A 20 x 1 = 20 marks	CO	KL
	Answer ALL the questions		
1	The Youngs modulus of a perfect rigid body is	1	1
	a) infinity b) zero c) unity d) constant		
2	According to Hooke's law of elasticity, if stress is increased, then	1	1
	the ratio of stress to strain		
	a) remains constant b) increases		
	c) decreases d) becomes zero		
3	The SI unit of torsion is	1	1
	a) N m b) N/m		
	c)Nsm ⁻² d) Nm ²		
4	Modulus of rigidity is the ratio of	1	1
	a) Stress to strain		
	b) tensile stress to tensile strain		
	c) compressive stress to compressive strain		
	d) shear stress to shear strain		
5.	The work done in blowing a soap bubble of radius R is W_1 and that	1	1
	to a radius 3R is W ₂ . The ratio of work done is		
	a) 1:3 b) 3:1 c) 1:9 d) 9:1		
6	A water drop is divided into 27 equal droplets. The pressure	1	1
	difference between the inner and outer side of the big drop will be		
	a) Same as that for smaller droplet		
	b) 1/3 of that for smaller droplet		
	c) 1/6 of that for smaller droplet		
	d) Twice of that for smaller droplets		
7	Dimension of surface tension	1	1
	a) $M^{1}T^{2}$ b) $M^{1}T^{-2}$ c) $M^{-1}T^{2}$ d) $M^{0}T^{-2}$		
8	Expression for excess pressure 'P' inside a liquid drop	1	1
	a) $P = 2T/R$		
	b) $P = T/R$		
	c) $P = 4T/R$		
	d) $P = 2T/3R$		
9	What happens to the viscosity of liquid with the increase in	1	1
	temperature		
	a) It increases		
	b) It decreases		
	c) It may increase or decrease		
	d) No change		

10	The unit of coefficient of viscosity is a) Ns/m ² b) Nm/s c) Ns/m d) Nm/s ²	1	1
11	A ball is falling freely in a viscous liquid. If the radius of the ball is	1	1
11	doubled, its terminal velocity will become	1	
	a) Doubled b) Half c) One fourth d) Four times		
12	Critical velocity of the liquid	1	1
	a) Decreases when radius decreases	_	
	b) Increases when radius decreases		
	c) Decreases when density increases		
	d) Increases when density increases		
13	The particle of the medium vibrates in the transverse wave	1	1
	a) At a right angle to the direction of wave motion		
	b) Along the direction of the wave motion		
	c) Opposite to the direction of the wave motion		
	d) Do not vibrate		
14	Lissajous figures are used for measuring	1	1
	a) Current b) Frequency c) Resistance d) Voltage		
15	The gap between a concecutive node and anti-node in a stationary	1	1
	wave is?		
1.6	a) $\lambda/2$ b) λ c) 2 d) $\lambda/4$ Wave has simple harmonic motion whose period is 4 second while		
16		1	1
	another wave which also possesses simple harmonic motion has its		
	period 3 second. If both are combined, then the resultant wave will		
	have the period equal to $(1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$		
17	a) 4 second b) 7 second c) 12 second d) 3 second The time gap between the initial direct sound and the reflected sound	1	1
17	up to a minimum audibility level is called	1	
	a) Reverberation time b) Absorption time		
	c) Sabine d) Reflection time		
18	Which of the following types of absorbents can absorb the sound of	1	1
10	any frequency?	-	
	a) Resonant panels b) Cavity resonators		
	c) Porous materials d) Composite types		
19	Staircase in a hall is covered with carpets to reduce	1	1
	a) Reverberation b) Echelon effect		
	c) Resonance d) Focusing		
20	Ultrasonic waves produce	1	1
	a) Heating effect in the medium b) Cavitation		
	c) Stationary waves d) All the above		
Q. No.	SECTION B 10 x 2 = 20 marks	CO	KL
	Answer ALL the questions		
21	Define Poisson's ratio.		2
22	Distinguish uniform and non uniform bending.	2	2
23	Mention any two applications of surface tension.	2	2
24	Why do small bubbles have excess pressure?	2	2
25	Define coefficient of viscosity.	2	2
26	Write the formula for Bernoulli's principle.	2	2
27	What is Lissajous figure?	2	2
28	How do you find the velocity of a transverse wave?		2
29	Define reverberation time.	2	2
30	What are ultrasonic waves?	2	2

/2/

Q. No.	SECTION C2 × 20 = 40 marksAnswer any TWO questions	CO	KL
31	A) Determine the young's modulus of the material of the beam subject to uniform bending using the pin and microscope arrangement. (10 Mark)		3
	B) Elucidate the theory and experimental method for determining the rigidity modulus of a wire using torsion pendulum. (10 Mark)	4	4
32	A) Obtain an expression for the excess pressure inside the spherical soap bubble and a spherical liquid drop. (10 Mark)	3	3
	B) Describe Jaegar's method of studying the variation of surface tension of water with temperature. (10 Mark)	4	4
33	A)Derive Poiseuille's formula for the rate of flow of liquid through a capillary tube. (10 Mark)	3	3
	B)Elucidate the characteristics of a simple harmonic motion and obtain its equation. (10 Mark)	4	4
34	A)Explain the production of ultrasonic waves by piezoelectric method. (10 Mark)	3	3
	B)Derive Sabines formula for reverberation time and explain its significance. (10 Mark)	4	4
Q. No.	SECTION D4 x 5 = 20 marksAnswer any FOUR questions	CO	KL
35	A steel wire with a diameter of 2 mm and a length of 5 meters is suspended vertically from a fixed point. A weight of 500N is hung from the lower end of the wire, causing it to stretch by 5 mm. Calculate the Young's modulus of the steel.	5	5
36	The pressure of air in a soap bubble of $7 \ge 10^{-3}$ m diameter is $8 \ge 10^{-3}$ m of water above the atmospheric pressure. Calculate the surface tension of the soap solution.		5
37	In a experiment with Ostwald viscometer, the time of flow of water and ethanol are 80 second and 175 second at 20° C. the density of water = 0.998 g cm ⁻³ and that of ethanol = 0.790 g cm ⁻³ . The viscosity of water at 20° C is 0.01008 poise. Calculate the viscosity of ethanol.	5	5
38	An observer observes two moving trains, one reaching the station and other leaving the station with equal speed of 8 ms ⁻¹ . If each train sounds its whistles with frequency 240 Hz, then calculate the number of beats heard by the observer. Assume the speed of sound in air is 330 ms ⁻¹ .	5	5
39	A hall of volume 5500 m ³ is found to have a reverberation time of 2.3 second. The sound absorbing surface of the hall has an area of 750 m ² . Calculate the average absorption coefficient	5	5
40	Calculate Reynolds number, if a fluid having viscosity of 0.4 Ns/m^2 and relative density of 900 Kg/m ³ through a pipe of 20 mm with a velocity of 2.5 m.	5	5
