STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2023 - 2024)

B.Sc. DEGREE EXAMINATION NOVEMBER 2023 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE: ALLIED - COREPAPER: PHYSICS FOR MATHEMATICS - ISUBJECT CODE: 23PH/AC/PM13TIME: 3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A	CO	KL
	Answer ALL the questions(20x1=20)		
1.	In the context of impulse, which of the following is true?A) A force applied over a short period of time.B) A constant force applied to an object.C) A force applied over a long period of time.	CO1	K1
	D) A force applied to a stationary object.		
2.	Which of the following represents an internal force in a system?A) Friction between the object and the surface it is on	CO1	K1
	B) Gravity acting on the objectC) Force applied to the object from an external sourceD) Tension in a rope between two objects in the system		
3.	 Which of the following represents a unit of impulse? A) Newton-second (N•s) B) Joule (J) C) Kilogram per meter (kg/m) D) Meter per second squared (m/s²) 	CO1	K1
4.	 In a collision, if two objects stick together after impact and move with a common velocity, what type of collision is it? A) Perfectly elastic B) Perfectly inelastic C) Partially elastic D) Elastic 	CO1	К1
5.	 What does the amplitude of a simple harmonic motion represent? A) Maximum velocity B) Maximum displacement from equilibrium C) Maximum acceleration D) Maximum potential energy 	CO1	K1
6.	In simple harmonic motion, the acceleration at each instant is A) proportional to the negative of the displacement at that instant. B) equal to the displacement at that instant. C) is zero at that instant D) is inversely proportional to the displacement	CO1	K1
7.	Degrees of freedom of N system of particles moving independently of each other is A) 6N B) 2N C) 3N D) zero	CO1	K1

8.	The constraints are said to be holonomic if (A) the distance between any two points of moving body	CO1	K1
	is always fixed		
	(B) the time is changing between the events		
	(C) the distance between the two rigid body is zero		
	(D) the constraints are independent of time.	0.01	***
9.	Unit of stress is	CO1	K1
	$ (A) kg (B) m (B) N/^2 $		
10	$(C) \text{ cm} \qquad (D) \text{ N/m}^2$	0.01	17.1
10.	Hooke's law gives the following relation	CO1	K1
	(A) Stress is directly proportional to strain (D) within alastic limit strass should be zero		
	(B) within elastic limit stress should be zero		
	(C) stress is inversely proportional to strain(D) within elastic limit strain should be zero		
11		CO1	K1
11.	When you apply load at free end of a beam, the filament below the neutral axis	COI	KI
	(A) get elongated		
	(B) get compressed		
	(C) neither elongated nor compressed		
	(D) Extend out of the beam		
12.	Geometrical moment of inertia of a rectangular beam is	CO1	K1
12.	(A) $bd^3/12$ (B) $b^3d/12$		
	(C) $12/bd^3$ (D) $12/b^3d$		
13.	Velocity of water layer at the walls of a capillary tube is	CO1	K1
10.	(A) very high (B) equal to that of at centre	001	
	(C) zero (D) both A and C		
14.	In turbulent flow of liquid, the velocity at every point	CO1	K1
	(A) is same (B) will vary		
	(C) is zero (D) is a dependent quantity		
15.	Unit of surface tension	CO1	K1
	(A) N/m (B) N-m		
	(C) N/m^2 (D) Nm^2		
16.	Surface tension of a drop of water is	CO1	K1
	(A) inversely proportional to the radius of the drop		
	(B) directly proportional to the radius of the drop		
	(C) independent of the radius of the drop.		
	(D) All the above.	0.01	
17.	In inertial frames of reference, which of the following statements	CO1	K1
	is true?(A) Laws of physics are the same for all observers in inertial		
	frames.		
	(B) Observers in different inertial frames will measure different		
	physical constants.		
	(C) Inertial frames experience constant acceleration.		
	(D) Observers in inertial frames perceive time differently		
18.	What does the Galilean Transformation describe in the	CO1	K1
	context of Newtonian relativity?		
	(A) The transformation of mass into energy.		
	(B) The transformation of time and space coordinates		
	between inertial frames at constant velocity.		
	(C) The transformation of matter into antimatter.		
	(D) The transformation of light waves in different media.		

19.	What does the "Twin Paradox" in Special Relativity	CO1	K1
	describe?		
	(A) Two twins aging at different rates due to differences in		
	gravity.		
	(B) One twin remaining younger than the other twin due to		
	traveling at a high velocity.		
	(C) Two twins having the same age despite one traveling at a		
	high velocity.		
	(D) One twin appearing older due to differences in atmospheric pressure.		
20.	What does the Mass-Energy Relation signify in Einstein's	CO1	K1
20.	theory of relativity?		
	(A) The conversion of matter into energy.		
	(B) The conversion of energy into mass.		
	(C) The conservation of mass in all physical processes.		
	(D) The conversion of time into energy.		
Q. No.	SECTION B	CO	KL
• 1	Answer ALL the questions(10x2=20)	~~~	
21.	Define impulse	CO2	K2
22.	Write down the law of conservation of energy	CO2	K2
23.	What is simple harmonic motion ? Give an example	CO2	K2
<u>24.</u> 25.	What are constraints ? Give any two examples Define Poisson's ratio	CO2 CO2	K2 K2
<u> </u>	What is neutral axis?	CO2 CO2	K2 K2
20.	Define co-efficient of viscosity.	CO2 CO2	K2 K2
27.	Define surface tension.	CO2	K2 K2
20.	Write down any two postulates of special theory of relativity	CO2	K2
30.	What is meson paradox ?	CO2	K2
Q. No.	SECTION C	CO	KL
C	Answer any TWO questions (2x20=40)		
31.	(a) Derive the equation for loss in kinetic energy due to	CO3	K3
	direct impact of two smooth spheres (10 marks)		
	(b) Obtain an expression for energy of a simple harmonic	CO4	K4
-	oscillator. (10 marks)		
32.	(a) Derive the mathematical form of De Alemberts principle. (10 marks)	CO3	K3
	(b) Apply Lagrange's formulation to Atwood machine to	CO4	K4
	find acceleration (10 marks)		
33.	(a) Drive an expression for couple per unit twist	CO3	K3
	(10 marks)		
	(b) Discuss an experiment to determine the surface tension of a liquid by drop weight method. (10 marks)	CO4	K4
34.	(a) Explain length contraction with necessary theory. (10 marks)	CO3	K3
	(b) Discuss the physical significance of mass-energy	CO4	K4
	equivalence. (10 marks)		174

	SECTION D		
	Answer any FOUR questions(4 x 5= 20)		
35.	A particle of mass 2 kg moves along x-axis with an initial velocity of 3 m.s ⁻¹ . A force $F = -6$ N is applied for a period of 3s. Find the final velocity	CO5	K5
36.	A body of mass 5 kg is suspended by a spring, which stretches 0.1 m when the body is attached. It is then displaced downward an additional 0.05 m and released. Find the amplitude, time period of oscillation and frequency of resulting simple harmonic motion.	CO5	K5
37.	In an experiment to measure Young's modulus, a load of 500 kg, hanging from a steel wire of length 3m and cross- section 0.20 cm ² , was found to stretch the wire 0.4 cm above its no-load length. What were the stress, strain and the value of Young's modulus for the steel wire of which the wire was composed?	CO5	K5
38.	Water flows through a horizontal tube of length 0.2 m and internal radius 8.1 x 10^{-4} m under a constant head of liquid 0.2 m high. In 12 minutes 8.64 x 10^{-4} m ³ of liquid issues from the tube. Calculate the co-efficient of viscosity of water. (The density of water = 1000 kg m ⁻³ and g = 9.8).	CO5	K5
39.	A rigid bar of length $L_2 = 1.5$ m is at rest to system S'. If the bar makes an angle $\theta_2 = 45^{\circ}$ with respect to the x_2 axis, what is the length L1 and orientation of the bar θ_1 with relative to S when $v = 0.98$ c.	CO5	K5
40.	A ball of mass 8 kg moving with a velocity of 10 ms ⁻¹ impinges directly on another mass 24 kg moving at 2 ms ⁻¹ in the opposite direction. If $e = 0.5$, find the velocity of the balls after impact	CO5	K5
