STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086

(For candidates admitted during the academic year 2023-24)

B. Sc. DEGREE EXAMINATION, NOVEMBER 2023
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ MAJOR - CORE	
PAPER	$:$ DIFFERENTIAL CALCULUS	
SUBJECT CODE	$:$ 23MT/MC/DC14	
TIME	$: 3$ HOURS	MAX. MARKS : 100

Q. No.	SECTION A $(5 \times 2=10)$ Answer ANY FIVE questions	CO	KL
1.	If $y=\sin 3 x \cos 2 x$ find y_{n}.	1	1
2.	Show that the radius of curvature of $y=c \cosh \frac{x}{c}$ is $\frac{y^{2}}{c}$.	1	1
3.	Find the radius of curvature at any point (p, r) of the curve $p^{2}=a r$.	1	1
4.	Find the envelope of family of straight lines $x \cos \alpha+y \sin \alpha=a, \alpha$ being a parameter.	1	1
5.	State the necessary conditions for extrema of functions of two variables.	1	1
6.	Define a catenary.	1	1

Q. No.	SECTION B (10 $\times 1=10$) Answer ALL questions	CO	KL
7.	The $n^{\text {th }}$ derivative of a function whose numerator and denominator are both rational integral algebraic functions can be obtained by resolving the fraction into a) Factors b) Partial Fractions c) Product d) None of the above	2	2
8.	The $n^{\text {th }}$ derivative of ---------- of two functions can be found by using Leibnitz theorem. a) Sum b) Difference c) Product d) Quotient	2	2
9.	An equation of a curve in terms of s and ψ is called ---------- equation. a) Cartesian b) Parametric c) Polar d) Intrinsic	2	2
10.	The locus of centre of curvature of a curve is called its \qquad a) Curvature b) Evolute c) Involute d) Radius of curvature	2	2
11.	If each of the members of a family of curves touches a fixed curve , the E is called the \qquad of the family of curves . a) Evolute b) Involute c) Envelope d) None of the above	2	2
12.	The evolute of a curve is envelope of its \qquad a) Tangents b) Normals c) Chord d) Diameter	2	2
13.	The points where $f_{x}=0, f_{y}=0$ are called a) Stationary points b) Saddle points c) critical points d) all of the above	2	2
14.	To find the extrema of function, subject to a condition we use -- multiplier method. a) Leibnitz b) Cramer c) Hamilton d) Lagrange	2	2
15.	-------- is the curve traced by a point on the circumference of a circle which rolls (without sliding) on a circle. a) Cycloid b) Catenary c) Logarithmic Spiral d) Cardioid	2	2
16.	Node and Cusp are classification of ------------- Point a) Singular b) Isolated c) Double d) Stationary	2	2

Q. No.	SECTION C $(2 \times 15=30)$ Answer ANY TWO questions	CO	KL
17.	If $y=\left(\sin ^{-1} x\right)^{2}$, then show that (i) $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$ (ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$	3	3
18.	Find the envelope of family of straight lines $\frac{x}{a}+\frac{y}{b}=1$, where a and b are parameters connected by the relation $a^{2}+b^{2}=c^{2}$.	3	3
19.	Is origin a double point of the curve $y^{2}=2 x^{2} y+x^{4} y-2 x^{4} ?$ If so state its nature.	3	3
20.	Find the evolute of $x=a t^{2}, y=2 a t$.	3	3

Q. No.	SECTION D ($2 \times 15=30$) Answer ANY TWO questions	CO	KL
21.	a) Find the $n^{\text {th }}$ derivative of $\frac{x^{2}+1}{(x-1)(x-2)(x-3)}$. b) If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$, find $\frac{d^{2} y}{d x^{2}}$.	4	4
22.	Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.	4	4
23.	Find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to $2 x+3 y+5 z=$ 30.	4	4
24.	a) Show that the chord of curvature through pole of the curve $r^{m}=a^{m} \cos m \theta$ is $\frac{2 r}{m+1}$. b) Find the radius of curvature at the point (x, y) on the curve $\begin{equation*} y=a \log \sec \left(\frac{x}{a}\right) \tag{8+7} \end{equation*}$	4	4

Q. No.	SECTION E $(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$ Answer ANY TWO questions	CO	KL
25.	Find the equation of circle of curvature at the point $(3,1)$ of the curve $y=x^{2}-6 x+10$.	5	5
26.	If $x=\sin \theta, y=\operatorname{sinp} \theta$, then prove that (i) $\left(1-x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$. (ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(p^{2}-n^{2}\right) y_{n}=0$.	5	5
27.	Examine the extreme values for the function $x y(6-x-y)$	5	5
28.	Derive the equation of cycloid and state its characteristic properties.	5	5

