STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted during the academic year 2023-24)
B. Sc. DEGREE EXAMINATION, NOVEMBER 2023

BRANCH III - PHYSICS

FIRST SEMESTER

COURSE
PAPER
SUBJECT CODE
TIME
: ALLIED - CORE
: MATHEMATICS FOR PHYSICS - I
: 23MT/AC/MP15
: 3 HOURS

MAX. MARKS : 100

Q. No.	SECTION A $(\mathbf{5} \times \mathbf{2}=\mathbf{1 0})$ Answer ANY FIVE questions	CO	KL
1.	State Cayley Hamilton theorem.	1	1
2.	Find y_{n} if $y=\log (2 x+1)$.	1	1
3.	Eliminate the arbitrary functions from the functions $z=f(x+2 y)$.	1	
4.	Write the formula of Fourier series with periodic function 2π.	1	1
5.	Show that $f(x)=x \sin x$ is an even function.	1	1
6.	What is the test of optimality in simplex method?	1	1

$\begin{gathered} \hline \text { Q. } \\ \text { No. } \end{gathered}$	SECTION B (10 $\times 1=10)$ Answer ALL questions	CO	KL
7.	Choose the matrix corresponding to the characteristic roots 1,5. (a) $\left(\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right)$ (b) $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$ (c) $\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ (d) $\left(\begin{array}{ll}3 & 3 \\ 0 & 2\end{array}\right)$	2	2
8.	Find the characteristics equation of the matrix $\left(\begin{array}{ll}-1 & 3 \\ -1 & 4\end{array}\right)$ (a) $\lambda^{2}-3 \lambda-1=0$ (b) $\lambda^{2}-3 \lambda+2=0$ (c) $\lambda^{2}+\lambda+1=0$ (d) $\lambda^{2}-\lambda-2=0$.	2	2
9.	What is the nth derivative of $e^{3 x}$? (a) $3^{n} e^{3 x}$ (b) $-3^{n} e^{-3 x}$ (c) $(-1)^{n} 3^{n} e^{3 x}$ (d) $(-1)^{n} e^{3 x}$	2	2
10.	Choose a proper substitution to rationalise the given expression $\sqrt{\frac{5-x}{x-2}}$. (a) $2 \sin ^{2} \theta+5 \cos ^{2} \theta$ (b) $5 \sin ^{2} \theta+2 \cos ^{2} \theta$ (c) $2 \sin ^{2} \theta-5 \cos ^{2} \theta$ (d) $5 \sin \theta+2 \cos ^{2} \theta$.	2	2
11.	Find the partial differential equation of $z=(x+a)(y+b)$ (a) $z=p$ (b) $z=q$ (c) $z=p q$ (d) $q z=p$	2	2
12.	Find the complete integral of $z=p x+q y+p q$ (a) $z=a x+b y$ (b) $z=a x+b y+a b$ (c) $z=a(x+y)+a^{2}$ (d) $z=a x-b y-a b$	2	2

13.	Find the Fourier series coefficient a_{0} of $f(x)=\frac{\pi-x}{2}$ in $0 \leq x \leq 2 \pi$. (a) 0 (b) π (c) $\frac{\pi}{2}$ (d) $\frac{\pi^{2}}{4}$	2	2
14.	Choose the formula to find sine series for $f(x)$ in $(0, \pi)$. (a) $f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$ (b) $f(x)=\sum_{n=1}^{\infty} b_{n} \cos n x$ (c) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x$ (d) $f(x)=\sum_{n=1}^{\infty} a_{n} \cos n x$	2	2
15.	If the feasible solution is not a closed polygon then the problem has \qquad solution. (a) unbounded (b) optimal (c) degenerate (d) infinite	2	2
16.	If some decision variable is zero the solution is called \qquad (a)non-degenerate (b) optimal (c) feasible (d) degenerate	2	2

Q. No.	SECTION C $(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0})$ Answer ANY TWO questions	CO	KL
17.	Verify Cayley Hamilton theorem for the matrix $\mathrm{A}=\left(\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$ and hence find its inverse.	3	3
18.	Compute the nth derivative of the following functions (a) $\frac{3}{(x+1)(2 x-1)}$ (b) $\cos x \cos 2 x \cos 3 x$ 19. Solve: (a) $p+q+p q=0 \quad$ (b) $x p+y q=z$	3	3
20.	Make use of graphical method to solve the following LPP: Minimize $Z=20 x+10 y$ subject to the constraints $x+2 y \leq 40$ $3 x+y \leq 30$ $4 x+3 y \leq 60$ $x, y \geq 0$.	3	3

\(\left.$$
\begin{array}{|c|l|c|c|}\hline \begin{array}{c}\text { Q. } \\
\text { No. }\end{array} & \begin{array}{l}\text { SECTION D }(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0}) \\
\text { Answer ANY TWO questions }\end{array} & \text { CO } & \text { KL } \\
\hline 21 . & \begin{array}{l}\text { Evaluate the matrix } A^{6}-25 A^{2}+122 A \text { where A is }\left(\begin{array}{ccc}0 & 0 & 2 \\
2 & 1 & 0 \\
-1 & -1 & 3\end{array}\right) .\end{array}
$$ \& 4 \& 4

\hline 22 . \& Integrate:\left(a) \int \frac{d x}{(x+1) \sqrt{x^{2}+x+1}}\right. \& (b) \int \sqrt{(x-3)(7-x)} d x \& \mathbf{(5 + 1 0)}\end{array}\right) 4\)| 4 |
| :---: |
| 23. |
| |
| Examine the function $f(x)=x, 0 \leq x \leq \pi$ to express it in terms of
 cosine series. |

24.	A farmer has 100 acre farm. He can sell all tomatoes, lettuce and radishes that he can raise. The price he can obtain is Re.1 per kg for tomatoes, Re. 0.75 a heap for lettuce and Re.2 per kg for radishes. The average yield per acre is 2000 kgs for tomatoes, 3000 heaps for lettuce and 1000 kgs for radishes. Fertilizer is available at Re.0.50 per kg and the amount required per acre is 100kgs each for tomatoes and lettuce and 50 kgs for radishes. Labour for sowing, cultivation and harvesting per acre is 5 man-days for tomatoes and radishes and 6 man-days for lettuce. A total of 400 man-days of labour are available at Rs.20 per man-day. Formulate this problem as LP model to maximize the farmer's profit.	4	4

Q. No.	SECTION E $(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$ Answer ANY TWO questions	CO	KL
25.	Determine the eigen values and eigen vectors of the matrix $\mathrm{A}=\left(\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right)$.	5	5
26.	Prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$ if $y=e^{a s i n}{ }^{-1} x$ using Leibnitz's theorem.	5	5
27.	Express $f(x)=\left\{\begin{array}{cc}a & 0<x<\pi \\ -a & \pi<x<2 \pi\end{array}\right.$ as a Fourier series.	5	5
28.	Solve the following LPP using simplex method: Maximize $Z=3 x_{1}+2 x_{2}$ subject to the constraints $x_{1}+x_{2} \leq 4$ $x_{1}-x_{2} \leq 2$ $x_{1}, x_{2} \geq 0$	5	5

