STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20 & thereafter)

B. Sc. DEGREE EXAMINATION, NOVEMBER 2023 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	: MAJOR – CORE	
PAPER	VECTOR ANALYSIS AND APPLICATION	
SUBJECT CODE	: 19MT/MC/VA53	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION – A ANSWER ANY TEN QUESTIONS

(10×2=20)

- 1. Prove that $div \vec{r}=3$.
- 2. State the partial derivative of *r* with respect to *x*.
- 3. Define surface integral.
- 4. Prove that $curl \vec{r} = 0$.
- 5. When is a vector function considered to be differentiable?
- 6. Calculate the work done by the force $\vec{F} = 2y \vec{i} + xy \vec{j}$ in moving an object along a straight line from A(0,0,0) to B(2,1,0).
- 7. State Green's theorem.
- 8. Find a unit tangent vector to any point on the curve $x = a \cos wt$, $y = a \sin wt$, z = bt, where *w* is a constant.
- 9. State the physical significance of curl.
- 10. Define Flux.
- 11. State the potential energy at any point *P*.
- 12. Find the unit normal to the surface $x^4 3xyz + z^2 + 1 = 0$ at the point (1, -1, 1).

SECTION – B (5×8=40) ANSWER ANY FIVE QUESTIONS

13. If $\vec{a} = \sin \theta \, \vec{i} + \cos \theta \, \vec{j} + \theta \, \vec{k}$, $\vec{b} = \cos \theta \, \vec{i} - \sin \theta \, \vec{j} - 3 \, \vec{k}$ and $\vec{c} = 2 \, \vec{i} + 3 \, \vec{j} - 3 \, \vec{k}$, find $\frac{d}{d\theta} \{ \vec{a} \times (\vec{b} \times \vec{c}) \}$ at $\theta = \frac{\pi}{2}$.

14. If
$$\vec{A} = x^2 y z \vec{\imath} - 2x y^3 \vec{\jmath} + x z^2 \vec{k}$$
 and $\vec{B} = 2z \vec{\imath} + y \vec{\jmath} - x^2 \vec{z}$, find $\frac{\partial^2}{\partial x \partial y} (\vec{A} \times \vec{B})$ at $(1,0,-2)$.

- 15. Show that $\nabla^2 \left(\frac{x}{\vec{r}^3}\right) = 0.$
- 16. Find a unit vector which is normal to the surface $z = x^2 + y^2$ at the point (1,2,5).
- 17. Verify Green's theorem in the plane $\oint (xy + y^2)dx + x^2dy$ for a closed region *C* bounded by y = x and $y = x^2$.
- 18. Explain in detail the significance of physical interpretation of divergence.
- 19. Find the total work done in moving a particle in a force field by $\vec{F} = 3xy \ \vec{i} 5z \ \vec{j} + 10x\vec{k}$ along the curves $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.

..2

$SECTION - C \qquad (2 \times 20 = 40)$

ANSWER ANY TWO QUESTIONS

20. a) If A and B are differentiable vector functions of a scalar t, then prove that

i)
$$\frac{d}{dt}(A \cdot B) = A \cdot \frac{dB}{dt} + \frac{dA}{dt} \cdot B$$
 ii) $\frac{d}{dt}(A \times B) = A \times \frac{dB}{dt} + \frac{dA}{dt} \times B$.

- b) Find the direction derivative of $\phi = x^2 y^2 + 2z^2$ at the point *P*(1,2,3) in the direction of the line *PQ*, where *Q* has coordinates (5,0,4).
- c) Show that i) $\nabla\left(\frac{1}{r^2}\right) = -\frac{\vec{r}}{r^3}$ ii) $\nabla r^n = nr^{n-2}\vec{r}$ (6+6+8)
- 21. a) Verify Stoke's theorem for $\vec{F} = y \vec{i} + z \vec{j} + x\vec{k}$, where *S* is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and *C* is its boundary.
 - b) Calculate the divergence in terms of Curvilinear Coordinates. (10+10)
- 22. Verify divergence theorem for $\vec{F} = (x^2 yz) \vec{i} + (y^2 zx) \vec{j} + (z^2 xy)\vec{k}$ taken over the rectangular parallelopiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.