STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2019-20 \& thereafter)

B. Sc. DEGREE EXAMINATION, NOVEMBER 2023
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	$:$ MAJOR - CORE	
PAPER	$:$ VECTOR ANALYSIS AND APPLICATION	
SUBJECT CODE	$:$ 19MT/MC/VA53	
TIME	$: \mathbf{3}$ HOURS	

SECTION - A
 ANSWER ANY TEN QUESTIONS

1. Prove that $\operatorname{div} \vec{r}=3$.
2. State the partial derivative of r with respect to x.
3. Define surface integral.
4. Prove that $\operatorname{curl} \vec{r}=0$.
5. When is a vector function considered to be differentiable?
6. Calculate the work done by the force $\vec{F}=2 \mathrm{y} \vec{\imath}+\mathrm{xy} \vec{\jmath}$ in moving an object along a straight line from $A(0,0,0)$ to $B(2,1,0)$.
7. State Green's theorem.
8. Find a unit tangent vector to any point on the curve $x=a \cos w t, y=a \sin w t$, $z=b t$, where w is a constant.
9. State the physical significance of curl.
10. Define Flux.
11. State the potential energy at any point P.
12. Find the unit normal to the surface $x^{4}-3 x y z+z^{2}+1=0$ at the point $(1,-1,1)$.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

($5 \times 8=40$)
13. If $\vec{a}=\sin \theta \vec{\imath}+\cos \theta \vec{\jmath}+\theta \vec{k}, \vec{b}=\cos \theta \vec{\imath}-\sin \theta \vec{\jmath}-3 \vec{k}$ and $\vec{c}=2 \vec{\imath}+3 \vec{\jmath}-3 \vec{k}$, find $\frac{d}{d \theta}\{\vec{a} \times(\vec{b} \times \vec{c})\}$ at $\theta=\frac{\pi}{2}$.
14. If $\vec{A}=x^{2} y z \vec{\imath}-2 x y^{3} \vec{\jmath}+x z^{2} \vec{k}$ and $\vec{B}=2 z \vec{\imath}+y \vec{\jmath}-x^{2} \vec{z}$, find $\frac{\partial^{2}}{\partial x \partial y}(\vec{A} \times \vec{B})$ at $(1,0,-2)$.
15. Show that $\nabla^{2}\left(\frac{x}{\vec{r}^{3}}\right)=0$.
16. Find a unit vector which is normal to the surface $z=x^{2}+y^{2}$ at the point $(1,2,5)$.
17. Verify Green's theorem in the plane $\oint\left(x y+y^{2}\right) d x+x^{2} d y$ for a closed region C bounded by $y=x$ and $y=x^{2}$.
18. Explain in detail the significance of physical interpretation of divergence.
19. Find the total work done in moving a particle in a force field by $\vec{F}=3 \mathrm{xy} \vec{\imath}-$ $5 \mathrm{z} \vec{\jmath}+10 x \vec{k}$ along the curves $x=t^{2}+1, y=2 t^{2}, z=t^{3}$ from $t=1$ to $t=2$.

SECTION - C

$(2 \times 20=40)$

ANSWER ANY TWO QUESTIONS

20. a) If A and B are differentiable vector functions of a scalar t, then prove that
i) $\frac{d}{d t}(A \cdot B)=A \cdot \frac{d B}{d t}+\frac{d A}{d t} \cdot B$
ii) $\frac{d}{d t}(A \times B)=A \times \frac{d B}{d t}+\frac{d A}{d t} \times B$.
b) Find the direction derivative of $\phi=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line $P Q$, where Q has coordinates $(5,0,4)$.
c) Show that i) $\nabla\left(\frac{1}{r^{2}}\right)=-\frac{\vec{r}}{r^{3}}$
ii) $\nabla r^{n}=n r^{n-2} \vec{r}$
$(6+6+8)$
21. a) Verify Stoke's theorem for $\vec{F}=\mathrm{y} \vec{\imath}+\mathrm{z} \vec{\jmath}+x \vec{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
b) Calculate the divergence in terms of Curvilinear Coordinates.
22. Verify divergence theorem for $\vec{F}=\left(x^{2}-\mathrm{yz}\right) \vec{\imath}+\left(y^{2}-\mathrm{zx}\right) \vec{\jmath}+\left(z^{2}-x y\right) \vec{k}$ taken over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

acalacaal

