STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20 & thereafter)

B. Sc. DEGREE EXAMINATION, NOVEMBER 2023 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	: MAJOR – CORE	
PAPER	: PRINCIPLES OF REAL ANALYSIS	
SUBJECT CODE	: 19MT/MC/RA55	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION – A ANSWER ANY TEN QUESTIONS

 $(10 \times 2 = 20)$

- 1. If |x 2| < 1, prove that $|x^2 4| < 5$.
- 2. What is the condition for reformulation in the definition of continuous function?
- 3. Give an example for metric space.
- 4. Is $\varphi(t) = \frac{1}{t}$, continuous in \mathbb{R} ?
- 5. Define connected subset of a metric space.
- 6. Is $f(x) = x^3$, $(0 \le x \le 1)$ uniformly continuous?
- 7. Define compact set of a metric space.
- 8. When can you say a function f is bounded?
- 9. Define totally bounded subset of a metric space.
- 10. Define open set in a metric space M.
- 11. If a real valued function f has a derivative at the point $c \in R^1$, the prove that f is continuous at c.
- 12. Is $\int_1^\infty \frac{1}{x^{2/3}} dx$ convergent?

$$SECTION - B (5 \times 8 = 40)$$
ANSWER ANY FIVE QUESTIONS

- 13. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then f(x) + g(x) has a limit as $x \to a$, then prove that $\lim_{x \to a} [f(x) + g(x)] = L + M$.
- 14. If *f* and *g* are real valued functions which are continuous at $a \in M$, the prove that f + g, f g and fg are also continuous at *a*.
- 15. Show that a subset A of R^1 is connected if and only if whenever $a \in A$, $b \in A$, with a < b, then $c \in A$ for any c such that a < c < b.
- 16. Prove that if the subset A of a metric space $\langle M, p \rangle$ is totally bounded, then A is bounded.

- 17. Show that the metric space $\langle M, p \rangle$ is compact if and only if every sequence of points in *M* has a subsequence converging to a point in *M*.
- 18. Let *f* be a bounded function on the closed bounded interval [a, b]. Then prove that $f \in \Re[a, b]$ if and only if for each $\in > 0$, there exists a subdivision σ of [a, b] such that $U[f; \sigma] < L[f; \sigma] + \epsilon$.
- 19. State and prove Rolle's theorem.

$\begin{array}{l} \text{SECTION} - \text{C} & (2 \times 20 = 40) \\ \text{ANSWER ANY TWO QUESTIONS} \end{array}$

20. a) Let $\langle M, p \rangle$ be metric space and let *a* be a point in *M*. Let *f* and *g* be real valued functions whose domains are subsets of *M*. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = N$, then

prove that

- i) $\lim_{x \to a} [f(x) + g(x)] = L + N$
- ii) $\lim_{x \to a} [f(x) g(x)] = L N$
- iii) $\lim_{x \to a} [f(x)g(x)] = LN$
- iv) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{N}, N \neq 0.$
- b) Let *E* be a subset of the metric space *M*. Then prove that the point $x \in M$ is a limit point of *E* if and only if every open ball B[x; r] about *x* contains at least one point of *E*. (10+10)
- 21. a) Let $\langle M, p \rangle$ be metric space. Then prove that a subset *A* of *M* is totally bounded if and only if every sequence of points of *A* contains a Cauchy subsequence.

b) If *M* is a compact metric space then prove that *M* has the Heine-Borel property.

(10+10)

- 22. a) Let $\langle M_1, p_1 \rangle$ be a compact metric space. If *f* is a continuous function from M_1 into a metric space $\langle M_2, p_2 \rangle$, then prove that *f* is uniformly continuous on M_1 .
 - b) If $f \in \Re[a, b]$ and a < c < b, then prove that $f \in \Re[a, c]$, $f \in \Re[c, b]$ and $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$ (10+10)