STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted during the academic year 2019-20 and thereafter)

## B. Sc. DEGREE EXAMINATION, NOVEMBER 2023 <br> BRANCH I - MATHEMATICS <br> THIRD SEMESTER

| COURSE | $:$ MAJOR - CORE |  |
| :--- | :--- | :--- |
| PAPER | $:$ ELEMENTS OF GRAPH THEORY |  |
| SUBJECT CODE | $:$ 19MT/MC/EG34 |  |
| TIME | $: 3$ HOURS | MAX. MARKS: 100 |

SECTION-A
Answer any TEN questions
$(10 \times 2=20)$

1. Define degree of a vertex.
2. Define a complete graph.
3. When do you say a graph is connected?
4. Is the sequence $(4,4,4,2,2,2)$ graphic?
5. What is an Euler trail?
6. Define closure of a graph.
7. Define eccentricity of a tree.
8. When do you say a graph is planar?
9. Prove that $K_{5}$ is non - planar .
10. Give an example of a graph which is both Eulerian and Hamiltonian.
11. When do you say a vertex $v$ is reachable?
12. Define source and sink in a directed graph.

## SECTION-B <br> Answer any FIVE questions

13. Prove that number of vertices of odd degree is even.
14. Show that any self complementary graph has $4 n$ or $4 n+1$ points.
15. Show that closed walk of odd length contains a cycle.
16. Prove that if $G$ is a graph in which degree of every vertex is 2 , then $G$ contains a cycle.
17. Prove that closure of a graph is well defined.
18. Prove that every tree has a centre consisting either of one point or two adjacent points.
19. Prove that if a finite directed graph is cycle - free then prove that it contains a source and sink.

## SECTION-C <br> Answer any TWO questions

20. a) Prove that a line $x$ of a connected graph $G$ is a bridge if and only if $x$ is not on any cycle of $G$.
b) Prove that a graph is bipartite if and only if all its cycles are of even length.
21. a) If $G$ is a graph with $p \geq 3$ vertices and $\delta \geq \frac{p}{2}$. Prove that $G$ is Hamiltonian.
b) Let $G$ be a $(p, q)$ graph. Prove that the following statements are equivalent.
i) $G$ is a tree.
ii) Any two points of $G$ is joined by a unique path.
iii) $G$ is connected and $p=q+1$.
iv) $G$ is acyclic and $p=q+1$.
22. a) State and prove Euler's formula.
b) Explain Warshal's algorithm.

ALALALAAL

