STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2019-20 \& thereafter)

B. Sc. DEGREE EXAMINATION, NOVEMBER 2023 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	$:$ MAJOR - CORE
PAPER	$:$ ALGEBRAIC STRUCTURES
SUBJECT CODE	$:$ 19MT/MC/AS55
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A

Answer any ten questions:

$(10 \times 2=20)$

1. Define a subgroup
2. List the subgroup of Z_{30}.
3. Find the cycles of the permutation

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 4 & 3 & 1 & 2
\end{array}\right)
$$

4. Give an example of an automorphism of a group.
5. Define group isomorphism.
6. Define a normal subgroup of a group.
7. Define right coset of H in G .
8. Let $G=S_{3}$ and $H=\{(1),(13)\}$. Find the left coset of H in G.
9. Give an example of a ring.
10. Define field.
11. Write any two properties of ring homomorphism.
12. Give an example of a maximal ideal.

SECTION - B

Answer any five questions:
13. Let G be an abelian group and H and K be subgroups of G, then prove that $H K$ is a subgroup of G.
14. Prove that every permutation is a product of 2-cycles.
15. State and prove Fermat's little theorem.
16. Prove that $|H K|=\frac{|H \| K|}{|H \cap K|}$.
17. Construct multiplication table for $Z_{3}[i]^{*}$ and compute it as a ring.
18. Let R be a commutative ring with unity and A be an ideal of R. Then prove that R / A is a field if and only if A is maximal.
19. If F is a field of characteristic p, then F contains a subfield isomorphic to Z_{p}. If F is a field of characteristic 0 , then prove that F contains a subfield isomorphic to the rational numbers.

SECTION - C

Answer any two questions: $(2 \times 20=40)$

20. (a) Let G be a group and let $a \in G$, then prove that $\langle a\rangle$ is a subgroup of G.
(b) State and prove the Cayley's theorem.
21. (a) Is $(1,2,3)(1,2)$ an even permutation? Why?
(b) State and prove the Lagrange's theorem.
22. (a) Let D be an integral domain. Then prove that there exist a field F of quotients of D that contains a subring isomorphic to D.
(b) Prove that a finite integral domain is a field.
