STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted during the academic year 2019-2020 and thereafter)
B.C.A. DEGREE EXAMINATION, NOVEMBER 2023
 THIRD SEMESTER

COURSE	$:$ ALLIED - CORE
PAPER	$:$ MATHEMATICS FOR COMPUTER SCIENCE - I
SUBJECT CODE	$:$ 19MT/AC/MS35
TIME	$: \mathbf{3}$ HOURS

SECTION - A

($10 \times 2=20$)

ANSWER ANY TEN QUESTIONS

1. Find the Eigen values of the matrix $\left[\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right]$.
2. State Cayley Hamilton theorem.
3. Find a_{0} of the Fourier series for the function $f(x)=x$ in $0 \leq x \leq 2 \pi$.
4. Find the sine series for the function $f(x)=x$ in $(0, \pi)$.
5. If $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ is a unit vector, then show that $x \frac{d x}{d t}+y \frac{d y}{d t}+z \frac{d z}{d t}=0$.
6. Show that the vector $\vec{A}=x^{2} z^{2} \vec{i}+x y z^{2} \vec{j}-x z^{3} \vec{k}$ is solenoidal.
7. Define Complete graph with an example.
8. Prove that the sum of the degrees of the vertices of a graph G is twice the number of edges.
9. What is optimization problem?
10. Define Feasible solution of LPP.
11. Find the product of the eigen vales of the matrix $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right]$.
12. Find $\nabla \varnothing$ at $(1,3,2)$ where $\emptyset=2 x z-y^{2}$.

> SECTION - B
(5 X $8=40$)

ANSWER ANY FIVE QUESTIONS

13. Find the eigen vectors of $\left[\begin{array}{ccc}11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6\end{array}\right]$.
14. Find the Fourier series for the function $f(x)=\frac{x}{2}$ in $-\pi<x<\pi$ and deduce that $\frac{\pi}{4}=$ $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$
15. Find the value of the constants a, b, c so that $\vec{F}=(x+2 y+a z) \vec{i}+(b x-3 y-z) \vec{j}+$ $(4 x+c y+2) \vec{k}$ is irrotational.
16. In a graph G, prove that every $u-v$ path contains a simple $u-v$ path.
17. A company produces two types of leather belts A and B. A is of superior quality and B is of inferior quality. The respective profits are Rs. $10 /-$ and Rs. $5 /-$ per belt. The supply of raw material (leather) is sufficient for making 850 belts per day. For belt A special type of buckle is required and only 500 are available per day. There are 700 buckles available for belt B per day. Belt A needs twice as much time as that required for belt B and the company can produce 500 belts if all of them were of the type A . Formulate a linear programming model for the above problem.
18. Verify Cayley Hamilton theorem for the matrix $\left[\begin{array}{ccc}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$
19. Solve the following LPP by graphical method

> Minimize $z=20 x_{1}+10 x_{2}$
> subject to
> $x_{1}+2 x_{2} \leq 40$
> $3 x_{1}+x_{2} \geq 30$
> $4 x_{1}+3 x_{2} \geq 60$
> $x_{1}, x_{2} \geq 0$

SECTION - C

$(2 \times 20=40)$

ANSWER ANY TWO QUESTIONS

20. (a) Diagonalize the matrix $A=\left[\begin{array}{ccc}7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5\end{array}\right]$.
(b) If $\phi=3 x^{2} y-y^{3} z^{2}$, find $\operatorname{grad} \phi$ at the point $(1,-2,-1)$.
21. (a) Find the Fourier series for the function $f(x)=\left\{\begin{array}{cc}x, & 0 \leq x \leq \pi \\ 2 \pi-x, & \pi \leq x \leq 2 \pi\end{array}\right.$
(b) Show that $\nabla^{2} \log r=\frac{1}{r^{2}}$.
22. (a) Define Adjacency and Incidence matrix of a graph. Also find the Adjacency and Incidence Matrix of the following graph.

(b) Using simplex method, solve

$$
\begin{gathered}
\text { Maximize } z=x_{1}+x_{2}+3 x_{3} \\
\text { subject to } \\
3 x_{1}+2 x_{2}+x_{3} \leq 3 \\
2 x_{1}+x_{2}+2 x_{3} \leq 2 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

