B.COM. DEGREE EXAMINATION, NOVEMBER 2023
 BRANCH - HONOURS FIRST SEMESTER

COURSE	$:$	MAJOR CORE
PAPER	$:$	STATISTICS FOR BUSINESS
SUBJECT CODE	$:$	23BH/MC/SB14
TIME	$:$	3 HOURS

MAX. MARKS: 100

11	From the following data, Calculate Seasonal Indices:										1	2
	Year	Seasons										
		I	II	III	IV							
	2020	37	41	33	35							
	2021	37	39	36	36							
	2022	40	43	33	31							
Q. No.	SECTION CAnswer the following questions $\quad(4 \times 10=40)$										CO	KL
12 a.	Calculate Karl Pearson's coefficient of correlation from the following data:										2	3
	X 6	8	12	15	18 20	20	4 4 28	31				
	Y 10	12	15	15	18	$25 \quad 22$	- 26	28				
12 b .	(Or) In a trivariate distribution it was found that $\mathrm{r}_{12}=0.6 ; \mathrm{r}_{13}=0.7$; $\mathrm{r}_{23}=0.65$. Calculate (i) $\mathrm{R}_{1.23}$ (ii) $\mathrm{R}_{3.12}$ (iii) $\mathrm{R}_{2.13}$										2	3
13 a .	Can vaccination be regarded as preventive measure of small pox as evidenced by the following data? "Of 1482 persons exposed to small pox in a locality of 368 in all were attacked. Of these 1482 persons, 343 were vaccinated and of these only 35 were attacked." Given the Chi square value @ 5% of significance for 1 df is 3.84 . (Or)										2	3
13 b .	Two random samples drawn from normal populations. From the following data test whether the population variances are the same at 5% level. (Table value of F for $(9,7) \mathrm{df}$ @ 5% level = 3.68)										2	3
	Sample I		60	$\begin{aligned} & 65 \\ & 66 \\ & \hline \end{aligned}$	$\begin{array}{\|} 74 \\ \hline 85 \\ \hline \end{array}$	76	82	85				
	Sample II					78	63	8586	6 88	91		
14 a.	Examine 5 yearly moving averages from the following data:										3	4
	Year Income	$\begin{array}{\|l\|} \hline 2000 \\ \hline 161 \\ \hline \end{array}$	$\begin{aligned} & \hline 2001 \\ & \hline 127 \\ & \hline \end{aligned}$	$\begin{array}{l\|l} 1 & 2002 \\ \hline & 152 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2003 \\ \hline 143 \\ \hline \end{array}$	$\begin{aligned} & \hline 2004 \\ & \hline 144 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2005 \\ \hline 167 \\ \hline \end{array}$	2006	2007		3	
								182	179			
14 b.	2008 2009 2010 152 163 159 (Or) Fit a straight-line trend to the following data by the least squares method and Estimate the likely sales for the 2023.											
											4	
	Year		2016	2017	2018	2019	2020	2021	2022			
	Sales (Rs. Cror		20	23	22	25	26	29	30			

15 a.	You are given below the following information about advertisement and sales: (i) Calculate the two regression equations. (ii) Find the likely sales when advertisement expenditure is Rs. 25 crores. (iii) What should be the advertisement budget if the company wants to attain sales target of 150 crores? (Or) The simple correlation coefficients between variables X_{1}, X_{2}, X_{3} are $\mathrm{r}_{12}=0.41, \mathrm{r}_{13}=0.71$ and $\mathrm{r}_{23}=0.50$. Calculate the partial correlation coefficients $\mathrm{r}_{12.3}, \mathrm{r}_{23.1}, \mathrm{r}_{31.2}$					3 3	4
Q. No.	Answer any on	${ }^{\text {question }}$	$\Gamma I 0$		$(1 \times 15=15)$	CO	KL
16	The following t varieties of food Test using analy the average yiel	le gives the	elds	15 samp there is	of plot under three significant difference in	4	5
17	Find the Multip the data relating	Linear Reg three vari	sion es giv 9 6 14	uation 13 4 10	X1 on X2 and X3 from $\begin{array}{\|l\|} \hline 5 \\ \hline 8 \\ 4 \\ \hline \end{array}$	4	5

Q. No.	SECTION E \quad (1 x 15 = 15)	CO	KL
$\mathbf{C o m p u l s o r y ~ C a s e ~ S t u d y ~}$	A local ice cream parlor, Sweet Delights, offers a variety of flavors to its customers. The owner is interested in understanding the preferences of their customers to optimize their inventory and improve customer Satisfaction. The parlor offers four different flavors: Vanilla, Chocolate, Strawberry, and Mint Chip. The owner wants to know if there is a significant difference in the preferences of customers based on their age groups: Kids, Teenagers, and Adults.	$\mathbf{5}$	$\mathbf{6}$
	Data Collection: Over the course of a month, the parlor recorded the ice cream flavor choices of 300 customers. The customers were categorized into three age groups: Kids (under 12 years), Teenagers (13-19 years), and Adults (20 years and above). The data collected is as follows: Vanilla: Kids (50), Teenagers (30), Adults (20) Chocolate: Kids (20), Teenagers (60), Adults (40) Strawberry: Kids (40), Teenagers (10), Adults (30) Mint Chip: Kids (10), Teenagers (20), Adults (50) Problem Statement: Using the chi-square test, analyze the data to determine if there is a significant association between customers' age groups and their ice cream flavor preferences at Sweet Delights.		

