STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024)

B.C.A. DEGREE EXAMINATION, NOVEMBER 2023 FIRST SEMESTER

COURSE	:	MAJOR CORE	
PAPER	:	DIGITAL LOGIC FUNDAMENT	ALS
SUBJECT C	ODE:	23CS/MC/DL13	
TIME	:	3 HOURS	Μ

MAX. MARKS: 100

	SECTION A (20 x 1=20)	CO	KL
Q. No.	Objective Type Questions		
1.	number system is commonly used in digital	CO1	K1
	computers to represent data.		
	A) Octal B) Decimal C) Binary D) Hexadecimal		
2.	represents the basic theorem of Boolean	CO1	K1
	algebra that states $A + A' = 1$.		
	A) Commutative Law B) Idempotent Law		
	C) Associative Law D) Distributive Law		
3.	In a decimal adder, digits can be added	CO1	K1
	simultaneously.		
	A) 2 B) 4 C) 8 D) It varies		
4.	are the basic building blocks of sequential	CO1	K1
	circuits that can store one bit of information.		
	A) Flip-flops B) Multiplexers		
	C) Decoders D) Adders		
5.	is a characteristic of ROM.	CO1	K1
	A) Volatile memory B) Allows write operations		
	C) Stores permanent data D) Used for temporary storage		
6.	is the purpose of using 1's and 2's complement	CO2	K2
	in digital arithmetic.		
	A)To simplify binary addition		
	B) To represent negative numbers		
	C) To convert binary to gray code		
	D) To perform BCD addition		
7.	In gate-level minimization using the Map Method, what do	CO2	K2
	"Don't-Care" conditions represents		
	A) Conditions that are irrelevant in Boolean algebra		
	B) Conditions that cannot occur in a logic circuit		
	C) Conditions for which the output can be either 0 or 1		
	D) Conditions that must be met for gate-level optimization		
8.	is the primary function of an encoder in digital	CO2	K2
	circuits.		
	A) To perform addition B) To perform subtraction		
	C) To compress data D) To convert a set of inputs		
	into a binary code		
9.	is the main purpose of data shifting in a shift register.	CO2	K2
	A) To multiply data B) To count events		
	C) To store data D) To move data from one stage		
	to another		

10.	type of memory is typically used to store a		K2
	computer's BIOS.		
	A) RAM B) Cache memory		
	C) EEPROM D) DRAM		
11.	is the Gray code equivalent of the binary	CO3	K3
11.	number 1101.	005	110
10		GOD	17.0
12.	The logical operation performed by an XOR gate is	CO3	K3
	A) OR B) AND C) NOT D) Exclusive OR		
13.	In a 2-to-4 decoder, input lines are required to	CO3	K3
	select one of the four outputs.		
	A) 2 B) 4 C) 6 D) 8		
14.	is a type of flip-flop which is known for its ability	CO3	K3
17.		005	K.J
	to toggle its state when both of its inputs are active.		
	A) RS flip-flop B) JK flip-flop		
	C) D flip-flop D) T flip-flop		
15.	bits, including the parity bit, are set to 1 in an	CO3	K3
	8-bit data word with even parity.		
	A) 3 bits B) 4 bits C) 5 bits D) 6 bits		
16.	The binary equivalent of octal number "36" is	CO4	K4
10.	A) 11100 B) 11010 C) 11011 D) 10101	004	1117
17		001	TZ 4
17.	Analyze a given truth table and determine the simplified		K4
	Boolean expression using the Map Method for inputs A, B, C,		
	D.		
	A B C D Output		
	0 0 0 1		
	1 0 1 0 0		
	A) $A'BD' + ACD$		
	B) $AB' + C'D$		
	C) A' + B + C + D'		
	D) A'B + C'D'		
18.	The number of data select lines required for selecting 8 inputs	CO4	K4
101	from 8x1 multiplexer is		
	A) 1 B) 2 C) 3 D) 4		
10		<u> </u>	17.4
19.	number of flip-flops are required to make a	CO4	K4
	mod-32 binary counter.		
	A) 5 B) 10 C) 12 D) 16		
20.	The Von Neumann architecture emphasizes on	CO4	K4
	in computer design.		
	A) Parallel processing		
	B) Separate data and instruction memory		
	C) Shared memory for data and instructions		
	D) Centralized control unit		
	SECTION B (4 x 5=20)	CO	KL
Q. No.	Answer all the questions		
11.	a) What is D-flip flop? Draw its circuit diagram and mention	CO1	K1
11.			171
	its advantages.		
	(or)		
	b) Explain the concept of a Ripple counter.		

10		G Q	
12.	a) Discuss about Huntington Postulates with examples.	CO2	K2
	(or)		
10	b) State and Prove De-Morgan's theorem using truth tables.	GOA	17.0
13.	a) Identify and explain the key components and connections in	CO3	K3
	a full adder circuit design.		
	(or)		
	b) Use a 4-input decoder to illustrate how the numbers 0 to 9		
1.4	can be displayed in a digital clock.	004	TZ 4
14.	a) Compare and contrast PLA and PAL.	CO4	K4
	(or)		
	b) Differentiate between machine language and assembly		
O N-	language.	CO	I/I
Q. No.	SECTION C (6 x 10=60)	CO	KL
1.5	Answer all the questions	0.01	77.1
15.	a) Describe the basic binary logic gates. Provide truth tables	CO1	K1
	and logic symbols for each gate.		
	(or)		
	b) Define BCD numbers and their significance. Perform BCD		
16	addition and subtraction operations with examples.	G Q	
16.	a) Discuss common methods for detecting and correcting	CO2	K2
	errors in RAM and ROM.		
	(or)		
17	b) Explain Von Neumann Architecture with a neat diagram.	COL	17.2
17.	a) Simplify the Boolean function using Tabulation method. $\Gamma(1, 4, 6, 7, 8, 0, 10, 11, 15)$	CO3	K3
	F(w,x,y,z) = (1,4,6,7,8,9,10,11,15)		
	(or) (b) Simplify the Declar function using K Man i) Sum of		
	b) Simplify the Boolean function using K-Map i) Sum of Products ii) Product of Sums		
	F=A'B'C'+B'CD'+A'BCD'+AB'C'		
18.		CO4	K4
10.	a) Compare and contrast between encoder and multiplexer.	004	K 4
	(or) b) Design a 4-to-1 multiplexer circuit using logic gates and		
	explain how do they work?		
19.	a) Differentiate the following:	CO4	K4
17.	i) RS and JK Flip-Flops	004	
	i) Synchronous and Asynchronous Sequential Circuits		
	(or)		
	b) How a register stores binary data? Discuss the internal		
	components of a register.		
20.	a) Subtract the following numbers :	CO5	K5
20.	i) 11010 – 1101 (2's complement & 1's complement)	005	IX.J
	i) $753 - 864$ (Using 10's complement & 9's complement)		
	(or)		
	b) Convert the following numbers from one base to another:		
	i) (76.4) ₈ to Decimal		
	i) $(0.6875)_{10}$ to Binary		
	iii) $(11110110101)_2$ to Hexadecimal		
	iv) $(10011010101)_2$ to Octal		