STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2019 – 20 & thereafter)

B.Sc. DEGREE EXAMINATION, NOVEMBER 2023 BRANCH IV- CHEMISTRY FIFTH SEMESTER

COURSE	: MAJOR CORE		
PAPER	: ORGANIC CHEMISTRY-III		
SUBJECT CODE	: 19CH/MC/OC54		
TIME	: 3 HOURS		
	SECTION – A		

Answer all the questions.

Π

I Choose the correct Answer:

1.	Pyridine is basic in n	ature due to				
	(a) Donates OH ions		(b) Donates a lone pair of electrons			
	(c) Accepts a lone pair of electrons		(d) Donates H ⁺ ions			
2.	Furan is reduced by hydrogen in the presence of nickel to produce					
	(a) Hydrofuran	(b) Tetrahydrofuran	(c) Furoic acid	(d) Furfural		
3.	Osazone is formed when D-glucose reacts with					
	(a) Semicarbazide		(b) 2,4-Dinitrop	henylhydrazine		
	(a) Semicarbazide(c) Phenylhydrazine					
4.	. A silver mirror is formed when glucose is oxidised with					
	(a) Fehling solution		(b) Tollen's reagent			
	(a) Fehling solution(c) Molisch reagent		(d) Schiff's reagent			
5.		nt in carrot is known a				
		(b) β-carotene				
6.	. The presence of a double bond in α -Pinene is proved by the following					
	(a) Elimination of Br ₂		(b) Addition of Br ₂			
	 (a) Elimination of Br₂ (b) Addition of Br₂ (c) Elimination of Br (d) Substitution of Br 					
7.	7. The intermediate formed in Wolf rearrangement is					
_		(b) Nitrene				
8.	3. Name the rearrangement in which 1,2-diketones yields α -hydroxycarboxylic acid in					
	the presence of a stro					
0				(d) Benzilic acid		
9.	. 1,3-dithiane can be used to protect which of the following functional group					
10		(b) –OH				
10. The functional group transformation of $>C=O$ to $>C=CH_2$ can be achieved by the						
	following reaction	(1) 117.4.1	()			
	(a) Clemmensen	(b) Wittig	(c) Swern	(d) None of the above		
Fill in the blanks:						
11. Isatin is 2,3-diketo derivative of						
12. Sucrose is asugar.						
13. The chlorophyll has as the central metal ion.						
14	14. The enzyme responsible for the hydrolysis of maltose into glucose is					

- 15. The simplest carbohydrates that cannot be hydrolysed into simpler carbohydrates, are called ______.
- 16. Nicotine is the chief alkaloid of _____ plant.
- 17. Isocyanates on hydrolysis with water gives ______ and CO₂.

...2 19CH/MC/OC54

MAX.MARKS :100

(30x1=30)

- 18. In ______ rearrangement acyl azide on heating gives isocyanate.
- 19. Acetamide reacts with LiAlH₄ / Ether to yield _____
- 20. The protecting group for aldehyde is _____.

III State whether true or false:

- 21. Quinoline on oxidation with KMnO₄ yields Quinolinic acid.
- 22. The amylopectin present in starch gives blue colour with iodine.
- 23. α terpineol can be prepared from α citral.
- 24. In Wolff rearrangement, a diazoketone eliminates N₂ resulting in a ketene.
- 25. An acidic medium is maintained for Wolf-Kishner reduction.

IV Answer in a line or two:

- 26. Give the oxidation products of α -Citral with KMnO₄.
- 27. What is mutarotation?
- 28. State isoprene rule.
- 29. What is sigmatropic rearrangement?
- 30. Write one method of -NH₂ protection and deprotection?

- 31. Explain with mechanism the Fischer-Indole synthesis.
- 32. How is glucose converted to fructose?
- 33. Discuss about the structural determination of Citral.
- 34. Explain Hoffmann exhaustive methylation taking piperidine as an example.
- 35. Discuss the mechanism of Benzilic acid rearrangement.
- 36. Write any one method for protection and deprotection of –COOH and -OH functional groups
- 37. Discuss the mechanism of Curtius rearrangement with an example

SECTION – C (2x20=40) ANSWER ANY TWO QUESTIONS

- 38. (a) Write the nucleophilic aromatic substitution reactions of pyridine?
 - (b) How will you obtain glucosazone from glucose?
 - (c) Explain the mechanistic details of the following molecular rearrangements(i) Pinacol–Pinacolone (ii) Beckmann (5+5+10)
- 39. (a) Explain with mechanism (i) Bischler Napieralsky synthesis (ii) Skraup synthesis.(b) How is the structure of Nicotine elucidated? Confirm the same by its synthesis.

(10+10)

40. (a) Discuss the mechanism of (i) Fries rearrangement (ii) Cope rearrangement

(b)
$$CH_3CI \rightarrow ? MeMgBr, H_3O^+ ?$$

.....

(c) Explain the mechanism of oxidation of ROH with Cr (VI). (10+5+5)
