## STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI

Course Schedule: November 2023 - April 2024

| Department | $:$ Mathematics |
| :--- | :--- |
| Name/s of the Faculty | $:$ Dr. Amalore Arumica \& Dr. P. Subbulakshmi |
| Course Title | $:$ Numerical Methods with Programs in C |
| Course Code | $:$ 19MT/ME/NM45 |
| Shift | II |


| Week \& No. of hours | Units \& Topics | Teaching Methodology | Text \& References | Method of Evaluation |
| :---: | :---: | :---: | :---: | :---: |
| Nov 22 - 23, 2023 (Day Order $1 \& 2$ ) 2 hours | Unit 3 Numerical Differentiation <br> 3.1 Values of the Derivatives of $y$ based on Newton's Forward Interpolation Formulae | Lecture <br> Problem <br> Solving | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |
| Nov 24-30, 2023 <br> (Day Order 1 to 6) <br> $1+3$ hours $1+1 \text { hour }$ | Unit 2 Finite Differences <br> 2.1 Forward Differences <br> Unit 3 Numerical <br> Differentiation <br> 3.1 Values of the Derivatives of $y$ based on Newton's Backward Interpolation Formulae, Stirling's Formula <br> Practical <br> 2.7 C program to Interpolate and Extrapolate using the given pairs of values of $x$ and $y$ by Newton's Forward and Backward Interpolation Formulae <br> 3.3 C program to find the Derivative at the Initial Point of a Tabulated Function by Newton Forward Interpolation Formula | Lecture <br> Problem <br> Solving <br> Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |


| Dec 1-7, 2023 <br> (Day Order 1 to <br> 6) $1+3$ hours <br> $1+1$ hour | Unit 2 Finite Differences <br> 2.1 Forward Differences <br> Unit 3 Numerical Differentiation <br> 3.1 Stirling's Formula <br> 3.2 Second Order Derivatives of $f(x)$ using Newton's Formulae <br> Practical <br> 2.7 C program to Interpolate and Extrapolate using the given pairs of values of $x$ and $y$ by Newton's Forward and Backward Interpolation Formulae <br> 3.3 C program to find the Derivative at the Initial Point of a Tabulated Function by Newton Forward Interpolation Formula | Lecture <br> Problem <br> Solving <br> Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Third <br> Component <br> Test (Basics of C <br> Programming <br> [10 marks] |
| :---: | :---: | :---: | :---: | :---: |
| Dec 8-9, 2023 <br> (Day Order 1, 3) <br> 1 hour <br> 1 hour | Unit 3 Numerical Differentiation <br> 3.2 Maximum and <br> Minimum Value of $f(x)$ <br> Practical <br> 3.3 C program to find the Derivative at the Initial Point of a Tabulated Function by Newton Backward Interpolation Formula | Lecture <br> Problem <br> Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Quiz |
| Dec 11-15, 2023 <br> (Day Order 2 to 6 $\begin{aligned} & 1+2 \text { hours } \\ & 1+1 \text { hour } \end{aligned}$ | Unit 2 Finite Differences <br> 2.2 Backward Differences <br> Unit 3 Numerical Differentiation <br> 3.2 Maximum and <br> Minimum Value of $f(x)$ <br> Practical <br> 2.8 C program to Interpolate using the given pairs of values of $x$ and $y$ by Stirling's <br> Central Difference Interpolation Formula <br> 3.3 C program to find the Derivative at the Initial Point of a Tabulated Function by Newton Backward Interpolation Formula | Lecture <br> Flipped <br> Classroo <br> m <br> Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |


| Dec 16-22, 2023 <br> (Day Order 1 to <br> 6) <br> $1+3$ hours <br> $1+1$ hour | Unit 2 Finite Differences <br> 2.2 Backward Differences <br> Unit 4 Numerical Integration <br> 4.1 Newton Cote's Quadrature <br> Formula <br> Practical <br> 2.8 C program to Interpolate using the given pairs of values of $x$ and $y$ by Stirling's <br> Central Difference Interpolation <br> Formula <br> 4.5 C program to Evaluate <br> $\int_{a} f(x) d x$ <br> numerically using Simpson's rule | Lecture <br> Problem Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Third <br> Component Test (Problem Solving) [20 marks] |
| :---: | :---: | :---: | :---: | :---: |
| Jan 3-6, 2024 <br> (Day Order 1 to <br> 4) <br> 2 hours <br> $1+1$ hour | Unit 4 Numerical Integration <br> 4.2 Trapezoidal Rule <br> Practical <br> 4.5 C program to Evaluate <br> $\int_{a} f(x) d x$ <br> numerically using Simpson's rule | Lecture <br> Problem <br> Solving <br> Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Slip Test |
| Jan 8 - 12, 2024 | C.A. Test - I |  |  |  |
| Jan 13, 2024 <br> (Day Order 1) 1 hour | Unit 4 Numerical Integration 4.2 Trapezoidal Rule | Lecture Problem Solving | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |
| Jan 18 -20, 2024 <br> (Day Order 4 to <br> 6) <br> $1+1$ hour <br> 1 hour | Unit 2 Finite Differences <br> 2.3 Central Differences Unit 4 Numerical Integration 4.3 Simpson's One Third Rule | Lecture <br> Problem Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |
| $\begin{gathered} \text { Jan } 22-29,2024 \\ \text { (Day Order } 1 \text { to } \\ 6 \text { ) } \\ 1+3 \text { hours } \\ 1+1 \text { hour } \end{gathered}$ | Unit 2 Finite Differences <br> 2.3 Central Differences <br> Unit 4 Numerical Integration <br> 4.3 Simpson's One Third Rule <br> 4.4 Simpson's Three Eighth Rule <br> Practical <br> 2.9 C program to Interpolate y using the given pairs of values of x and y by Lagrange's Interpolation Formula <br> 4.5 C program to Evaluate <br> $\int_{a} f(x) d x$ <br> numerically using Simpson's rule | Lecture <br> Problem Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Quiz |


| Jan 30 - Feb 2, 2024 <br> (Day Order 1 to <br> 4) <br> 2 hours <br> $1+1$ hour | Unit 5 <br> Application <br> 5.1 Numerical Solution to Ordinary <br> Differential Equations <br> Practical <br> 2.9 C program to Interpolate y using the given pairs of values of x and y by Lagrange's Interpolation Formula <br> 5.4 C program to Solve the Differential Equation $\frac{d y}{d x}=f(x, y)$; $y\left(x_{0}\right)=y_{0}$ at the Pivotal Points by Euler's Method | Lecture <br> Problem Solving Programming | Veerarajan T. and Ramachandran T ., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |
| :---: | :---: | :---: | :---: | :---: |
| Feb 3, 2024 (Day Order 2) 1 hour | Unit 5 <br> Application <br> 5.1 Numerical Solution to Ordinary Differential Equations | Lecture <br> Problem Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |
| Feb 5- 6, 2024 <br> (Day Order 5 to <br> 6) <br> $1+1$ hour | Unit 2 Finite Differences <br> 2.4 Gregory-Newton's Forward and Backward Interpolation Formulae Unit 5 <br> Application <br> 5.1 Numerical Solution to Ordinary Differential Equations | Lecture Problem Solving | Veerarajan T. and Ramachandran T ., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |
| Feb 7-14, 2024 <br> (Day Order 1 to <br> 6) <br> $1+3$ hours <br> $1+1$ hour | Unit 2 Finite Differences <br> 2.4 Gregory-Newton's Forward and Backward Interpolation Formulae Unit 5 Application <br> 5.2 Euler's Method <br> Practical <br> 1.5 C program to find the Smallest Positive Root / the Largest Negative Root of the equation $\mathrm{f}(\mathrm{x})=0$ by using the Bisection Method and Newton Raphson Method 5.4 C program to Solve the Differential Equation $\frac{d y}{d x}=f(x, y)$; $y\left(x_{0}\right)=y_{0}$ at the Pivotal Points by Euler's Method | Lecture <br> Problem Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |


| Feb 15 - 22, 2024 <br> (Day Order 1 to <br> 6) <br> $1+3$ hours <br> $1+1$ hour | Interpolation with Equal Intervals <br> 2.5 Central Difference Interpolation Formulae - Gauss Forward and Backward Interpolation Formulae, Stirling's Interpolation Formula <br> Unit 5 Application <br> 5.3 Runge Kutta Method <br> Practical <br> 1.5 C program to find the Smallest Positive Root / the Largest Negative Root of the equation $\mathrm{f}(\mathrm{x})=0$ by using the Bisection Method and Newton Raphson Method 5.4 C program to Solve the Differential Equation $\frac{d y}{d x}=f(x, y)$; $y\left(x_{0}\right)=y_{0}$ at the Pivotal Points by Euler's Method | Lecture <br> Problem <br> Solving <br> Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Slip Test |
| :---: | :---: | :---: | :---: | :---: |
| Feb 23-24, 2024 <br>  <br> 5) <br> $1+2$ hours <br> $1+1$ hour | Unit 2 <br> Interpolation with Equal <br> Intervals <br> 2.5 Central Difference Interpolation <br> Formulae - Gauss Forward and <br> Backward Interpolation Formulae, <br> Stirling's Interpolation Formula <br> Unit 1 Numerical Solutions of <br> Algebraic and Transcendental <br> Equations <br> 1.1Bolzano's Bisection Method <br> Practical <br> 1.6 C program to solve a System of Linear Algebraic Equations using Gauss Jacobi's Iteration Method and Gauss Siedel Method <br> 5.5 C program to Solve <br> Simultaneous Differential $\begin{aligned} & \text { Equations } \\ & \frac{d y}{d x}=f(x, y, z) ; \frac{d z}{d x}=g(x, y, z) \text {; } \end{aligned}$ <br> $y\left(x_{0}\right)=y_{0} ; z\left(x_{0}\right)=z_{0}$ at the specified pivotal points by using Runge Kutta Method of the Fourth Order | Lecture <br> Problem <br> Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Quiz |


| Feb 26 - Mar 1, 2024 <br> (Day Order 2 to <br> 6) <br> $1+2$ hours <br> $1+1$ hour | Unit 2 Interpolation with Unequal Intervals <br> 2.6 Lagrange's Interpolation Formula for Unequal Intervals Unit 1 Numerical Solutions of Algebraic and Transcendental Equations <br> 1.1 Bolzano's Bisection Method Practical <br> 1.6 C program to solve a System of Linear Algebraic Equations using Gauss Jacobi's Iteration Method and Gauss Siedel Method <br> 5.5 C program to Solve <br> Simultaneous Differential $\begin{aligned} & \text { Equations } \\ & \frac{d y}{d x}=f(x, y, z) ; \frac{d z}{d x}=g(x, y, z) \end{aligned}$ <br> $y\left(x_{0}\right)=y_{0} ; z\left(x_{0}\right)=z_{0}$ at the specified pivotal points by using Runge Kutta Method of the Fourth Order | Lecture <br> Problem <br> Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |
| :---: | :---: | :---: | :---: | :---: |
| Mar 2, 2024 <br> (Day Order 1) <br> 1 hour | Unit 2 Interpolation with Unequal Intervals <br> 2.6 Lagrange's Interpolation Formula for Unequal Intervals Unit 1 Numerical Solutions of Algebraic and Transcendental Equations <br> 1.2 Newton Raphson Method | Lecture <br> Problem <br> Solving <br> Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Questioning |
| Mar 4-8, 2024 |  | C.A. Test - II |  |  |
| Mar 9 - 16, 2024 <br> (Day 6 \& Day Order 1 to 6) $1+4$ hours $1+1$ hour | Unit1 Iterative Methods of Solving Simultaneous Equations 1.2 Newton Raphson Method <br> 1.3 Jacobi's Method <br> 1.4 Gauss Seidel Iteration Method Practical <br> 1.6 C program to solve a System of Linear Algebraic Equations using Gauss Jacobi's Iteration Method and Gauss Siedel Method 5.5 C program to Solve Simultaneous Differential Equations $\frac{d y}{d x}=f(x, y, z) ; \frac{d z}{d x}=g(x, y, z)$; $y\left(x_{0}\right)=y_{0} ; z\left(x_{0}\right)=z_{0}$ at the specified pivotal points by using Runge Kutta Method of the Fourth Order | Lecture <br> Problem <br> Solving Programming | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Third <br> Component Test <br> (Programmin <br> g) [20 marks] |


| Mar 18-19, 2024 <br> (Day Order 2 to <br> 3) <br> 1 hour <br> 1 hour | Revision |  | Veerarajan T. and Ramachandran T., Numerical Methods, New Delhi: McGraw Hill, 2019. | Slip Test |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Mar 20-22, } 2024 \\ \text { (Day Order } 4 \text { to } \\ 6 \text { ) } \\ 1+1 \text { hour } \\ 1 \text { hour } \end{gathered}$ |  | REVISION |  |  |

