STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI

Department	: Mathematics
Name/s of the Faculty	: Dr. Amalore Arumica & Dr. P. Subbulakshmi
Course Title	: Numerical Methods with Programs in C
Course Code	: 19MT/ME/NM45
Shift	II

Week & No. of hours	Units & Topics	Teaching Methodology	Text & References	Method of Evaluation
Nov 22 – 23, 2023 (Day Order 1 & 2) 2 hours	Unit 3 Numerical Differentiation 3.1 Values of the Derivatives of y based on Newton's Forward Interpolation Formulae	Lecture Problem Solving	Veerarajan T. and Ramachandran T., <i>Numerical</i> <i>Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning
Nov 24-30, 2023 (Day Order 1 to 6) 1 + 3 hours 1 + 1 hour	 Unit 2 Finite Differences 2.1 Forward Differences Unit 3 Numerical Differentiation 3.1 Values of the Derivatives of y based on Newton's Backward Interpolation Formulae, Stirling's Formula Practical 2.7 C program to Interpolate and Extrapolate using the given pairs of values of x and y by Newton's Forward and Backward Interpolation Formulae 3.3 C program to find the Derivative at the Initial Point of a Tabulated Function by Newton Forward Interpolation Formula 	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical</i> <i>Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning

Dec 1-7, 2023 (Day Order 1 to 6) 1 + 3 hours 1 + 1 hour	Unit 2 Finite Differences2.1 Forward Differences2.1 Forward DifferencesUnit 3 Numerical Differentiation3.1 Stirling's Formula3.2 Second Order Derivatives of $f(x)$ using Newton's FormulaePractical2.7 C program to Interpolate andExtrapolate using the given pairs ofvalues of x and y by Newton'sForward and BackwardInterpolation Formulae3.3 C program to find theDerivative at the Initial Point of aTabulated Function byNewton Forward InterpolationFormulaUnit 3 Numerical Differentiation	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods,</i> New Delhi: McGraw Hill, 2019.	Third Component Test (Basics of C Programming [10 marks]
Dec 8-9, 2023 (Day Order 1, 3) 1 hour 1 hour	Unit 3 Numerical Differentiation 3.2 Maximum andMinimum Value of $f(x)$ Practical 3.3 C program to find theDerivative at the Initial Point of aTabulated Function byNewton Backward InterpolationFormula	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Quiz
Dec 11-15, 2023 (Day Order 2 to 6) 1 + 2 hours 1 + 1 hour	Unit 2 Finite Differences2.2 Backward DifferencesUnit 3 Numerical Differentiation3.2 Maximum andMinimum Value of $f(x)$ Practical2.8 C program to Interpolate usingthe given pairs of values of x and yby Stirling'sCentral Difference InterpolationFormula3.3 C program to find theDerivative at the Initial Point of aTabulated Function byNewton Backward InterpolationFormula	Lecture Flipped Classroo m Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods,</i> New Delhi: McGraw Hill, 2019.	Questioning

Dec $16 - 22$, 2023 (Day Order 1 to 6) 1 + 3 hours 1 + 1 hour	Unit 2 Finite Differences 2.2 Backward Differences Unit 4 Numerical Integration 4.1 Newton Cote's Quadrature Formula Practical 2.8 C program to Interpolate using the given pairs of values of x and y by Stirling's Central Difference Interpolation Formula 4.5 C program to Evaluate $\int_{a}^{b} f(x)dx$ numerically using Simpson's rule	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Third Component Test (Problem Solving) [20 marks]
Jan 3 – 6, 2024 (Day Order 1 to 4) 2 hours 1 + 1 hour	Unit 4 Numerical Integration 4.2 Trapezoidal Rule Practical 4.5 C program to Evaluate $\int_{a}^{b} f(x)dx$ numerically using Simpson's rule	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Slip Test
Jan 8 – 12, 2024		C.A. Test – I		
Jan 13, 2024 (Day Order 1) 1 hour	Unit 4 Numerical Integration 4.2 Trapezoidal Rule	Lecture Problem Solving	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning
Jan 18 -20, 2024 (Day Order 4 to 6) 1 + 1 hour 1 hour	Unit 2 Finite Differences 2.3 Central Differences Unit 4 Numerical Integration 4.3 Simpson's One Third Rule	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning
Jan 22-29, 2024 (Day Order 1 to 6) 1 + 3 hours 1 + 1 hour	Unit 2 Finite Differences 2.3 Central Differences Unit 4 Numerical Integration 4.3 Simpson's One Third Rule 4.4 Simpson's Three Eighth Rule Practical 2.9 C program to Interpolate y using the given pairs of values of x and y by Lagrange's Interpolation Formula 4.5 C program to Evaluate $\int_{a} f(x) dx$ numerically using Simpson's rule	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Quiz

Jan 30 – Feb 2, 2024 (Day Order 1 to 4) 2 hours 1 + 1 hour	Unit 5 Application 5.1 Numerical Solution to Ordinary Differential Equations Practical 2.9 C program to Interpolate y using the given pairs of values of x and y by Lagrange's Interpolation Formula 5.4 C program to Solve the Differential Equation $\frac{dy}{dx} = f(x, y);$ $y(x_0) = y_0$ at the Pivotal Points by Euler's Method	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning
Feb 3, 2024 (Day Order 2) 1 hour	Unit 5 Application 5.1 Numerical Solution to Ordinary Differential Equations	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning
Feb 5- 6, 2024 (Day Order 5 to 6) 1 + 1 hour	Unit 2 Finite Differences 2.4 Gregory-Newton's Forward and Backward Interpolation Formulae Unit 5 Application 5.1 Numerical Solution to Ordinary Differential Equations	Lecture Problem Solving	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning
Feb 7 – 14, 2024 (Day Order 1 to 6) 1 + 3 hours 1 + 1 hour	Unit 2 Finite Differences 2.4 Gregory-Newton's Forward and Backward Interpolation Formulae Unit 5 Application 5.2 Euler's Method Practical 1.5 C program to find the Smallest Positive Root / the Largest Negative Root of the equation $f(x) = 0$ by using the Bisection Method and Newton Raphson Method 5.4 C program to Solve the Differential Equation $\frac{dy}{dx} = f(x, y)$; $y(x_0) = y_0$ at the Pivotal Points by Euler's Method	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning

Feb 15 – 22, 2024 (Day Order 1 to 6) 1 + 3 hours 1 + 1 hour	Interpolation with Equal Intervals 2.5 Central Difference Interpolation Formulae – Gauss Forward and Backward Interpolation Formulae, Stirling's Interpolation Formula Unit 5 Application 5.3 Runge Kutta Method Practical 1.5 C program to find the Smallest Positive Root / the Largest Negative Root of the equation $f(x) = 0$ by using the Bisection Method and Newton Raphson Method 5.4 C program to Solve the Differential Equation $\frac{dy}{dx} = f(x, y)$; $y(x_0) = y_0$ at the Pivotal Points by Euler's Method	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Slip Test
Feb 23 – 24, 2024 (Day Order 1 & 5) 1 + 2 hours 1 + 1 hour	Unit 2 Interpolation with Equal Intervals 2.5 Central Difference Interpolation Formulae – Gauss Forward and Backward Interpolation Formulae, Stirling's Interpolation Formula Unit 1 Numerical Solutions of Algebraic and Transcendental Equations 1.1Bolzano's Bisection Method Practical 1.6 C program to solve a System of Linear Algebraic Equations using Gauss Jacobi's Iteration Method and Gauss Siedel Method 5.5 C program to Solve Simultaneous Differential Equations $\frac{dy}{dx} = f(x, y, z); \frac{dz}{dx} = g(x, y, z);$ $y(x_0) = y_0; z(x_0) = z_0$ at the specified pivotal points by using Runge Kutta Method of the Fourth Order	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Quiz

Feb 26 – Mar 1, 2024 (Day Order 2 to 6) 1 + 2 hours 1 + 1 hour	Unit 2 Interpolation with Unequal Intervals 2.6 Lagrange's Interpolation Formula for Unequal Intervals Unit 1 Numerical Solutions of Algebraic and Transcendental Equations 1.1 Bolzano's Bisection Method Practical 1.6 C program to solve a System of Linear Algebraic Equations using Gauss Jacobi's Iteration Method and Gauss Siedel Method 5.5 C program to Solve Simultaneous Differential Equations $\frac{dy}{dx} = f(x, y, z); \frac{dz}{dx} = g(x, y, z);$ $y(x_0) = y_0; z(x_0) = z_0$ at the specified pivotal points by using Runge Kutta Method of the Fourth Order	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods,</i> New Delhi: McGraw Hill, 2019.	Questioning
Mar 2, 2024 (Day Order 1) 1 hour	Unit 2 Interpolation with Unequal Intervals 2.6 Lagrange's Interpolation Formula for Unequal Intervals Unit 1 Numerical Solutions of Algebraic and Transcendental Equations 1.2 Newton Raphson Method	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Questioning
Mar 4 –8, 2024		C.A. Test – II		
Mar 9 – 16, 2024 (Day 6 & Day Order 1 to 6) 1 + 4 hours 1 + 1 hour	Unit1 Iterative Methods of Solving Simultaneous Equations 1.2 Newton Raphson Method 1.3 Jacobi's Method 1.4 Gauss Seidel Iteration Method Practical 1.6 C program to solve a System of Linear Algebraic Equations using Gauss Jacobi's Iteration Method and Gauss Siedel Method 5.5 C program to Solve Simultaneous Differential Equations $\frac{dy}{dx} = f(x, y, z); \frac{dz}{dx} = g(x, y, z);$ $y(x_0) = y_0; z(x_0) = z_0$ at the specified pivotal points by using Runge Kutta Method of the Fourth Order	Lecture Problem Solving Programming	Veerarajan T. and Ramachandran T., <i>Numerical Methods,</i> New Delhi: McGraw Hill, 2019.	Third Component Test (Programmin g) [20 marks]

Mar 18 - 19, 2024 (Day Order 2 to 3) 1 hour 1 hour	Revision		Veerarajan T. and Ramachandran T., <i>Numerical Methods</i> , New Delhi: McGraw Hill, 2019.	Slip Test
Mar 20-22, 2024 (Day Order 4 to 6) 1 + 1 hour		REVISION		
1 hour				