M.Sc. DEGREE EXAMINATION - APRIL 2023

BRANCH III - PHYSICS

SECOND SEMESTER
COURSE : MAJOR CORE
PAPER : MATHEMATICAL PHYSICS II TIME : 3 HOURS

MAX. MARKS: 100
SECTION A

I. ANSWER ALL QUESTIONS

1. State Convolution theorem.
2. Determine the sine transform of $e^{a x}$
3. Express Laplace equation in spherical coordinates.
4.Write the wave equation in three dimension.
4. Give the Hermite differential equation.
5. State Fuch's theorem.
6. Explain homomorphism?
7. What is a cyclic group?
8. Bring out the fallacy, if any, in the following statement:" The mean of binomial distribution is 5 and standard deviation $=3$ ".
9. Find the probability that at most 5 defective fuses will be found in a box of 200 fuses if experience shows that 2% of fuses are defective.

SECTION B

II. ANSWER ANY FIVE QUESTIONS

11. Determine the Fourier transform of the Gaussian distribution function

$$
\mathrm{F}(\mathrm{x})=\mathrm{N} \exp \left(-\alpha \mathrm{x}^{2}\right) \text { where } \mathrm{N} \text { and } \alpha \text { are constants. }
$$

12. Solve the two-dimensional Laplace equation in cylindrical coordinates.
13. S.T.
(i) $\mathrm{H}_{2 \mathrm{n}}(0)=(-1)^{\mathrm{n}} \frac{2 n!}{n!}$
(ii) $\mathrm{H}_{2 \mathrm{n}+1}(0)=0$.
14. Show that the following matrices form a group under matrix multiplication and draw the group table

$$
\mathrm{E}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathrm{A}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \mathrm{C}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

15. Show that if two symmetrical binomial distributions of degree n are so superposed that the $\mathrm{n}^{\text {th }}$ term of one coincides with $(\mathrm{n}+1)^{\text {th }}$ term of the other, the distribution formed by adding superposed terms is a symmetrical binomial distribution of degree $(\mathrm{n}+1)$.
16. Find the Laplace transform of the sawtooth wave function $\mathrm{f}(\mathrm{t})=\frac{a t}{T} \quad 0<t>T$ and $f(t+T)=f(t)$.
17. Find the Fourier transform of e^{-t}

SECTION - C

($3 \times 15=45$)

III. ANSWER ANY THREE QUESTIONS

18. Using finite Fourier sine and cosine transforms evaluate $\int_{0}^{\infty} \frac{\cos n x d n}{a^{2}+n^{2}}$ and $\int_{0}^{\infty} \frac{n \sin n x d n}{a^{2}+n^{2}}$
19. Explain great orthogonality theorem.
20. Solve two dimensional heat flow equation.
21. Obtain the series solution of the Bessels equation

$$
x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)+\left(x^{2}-n^{2}\right) y=0
$$

22. Define Poissons distribution and calculate the mean and standard deviation of poisons Distributions.
