STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE : 19MT/PC/TO24

M. Sc. DEGREE EXAMINATION, APRIL 2023 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE: CORE PAPER : TOPOLOGY TIME: 3 HOURS

MAX MARKS:100

SECTION-A (5×2=10)

ANSWER ALL THE QUESTIONS

- 1. Define a Topology
- 2. Give an example of subspace which is not connected
- 3. What is meant by Compact Spaces
- 4. Check whether the identity function from \mathbb{R}_{ℓ} to \mathbb{R} is continuous.
- 5. Explain Completely regular space

SECTION-B $(5 \times 6 = 30)$

ANSWER ANY FIVE QUESTIONS

- 6. Let \mathcal{B} and \mathcal{B}' be bases of topologies \mathcal{T} and \mathcal{T}' respectively on X. Then prove the following are equivalent:
 - (1) \mathcal{T}' is finer than \mathcal{T}
 - (2) For each x ∈ X and each basis element B ∈ B containing x, there is a basis element B' ∈ B' such that x ∈ B' ⊂ B.
- Prove that a space X is locally connected if and only if for every open set U of X, each component of U is open in X.
- 8. Prove that every closed subspace of a compact space is compact.
- 9. If X has a countable basis then prove that
 - (a) every open covering of X contains a countable subcollection covering X
 - (b) There exists a countable subset of *X* that is dense in *X*.
- 10. Prove that every regular space with a countable basis is normal.

- 11. If *X* be a set and \mathcal{D} be a collection of subsets of *X* that is maximal with respect to the finite intersection property. Then prove that
 - (a) Any finite intersection of elements of \mathcal{D} is an element of \mathcal{D} ,
 - (b) If A is a subset of X that intersects every element of \mathcal{D} , then A is an element of \mathcal{D} .
- 12. Let *X* be a set and *A* be a collection of subsets of X having the finite intersection property. Then prove that there is a collection \mathcal{D} of subsets of *X* such that \mathcal{D} contains *A* and \mathcal{D} has the finite intersection property and no collection of subsets of *X* that properly contains \mathcal{D} has this property.

SECTION-C $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 13. (a) Let X be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of C such that $x \in C \subset U$. Then prove that C is a basis for the topology of X.
 - (b) Show that the countable collection $\mathcal{B} = \{(a, b)/a < b, a \text{ and } b \text{ rational}\}$ is a basis that generates the standard topology on \mathbb{R} . (15 + 5)
- 14. Let *X* be a topological space. Then show that the following conditions hold:
 - (1) ϕ and X are Closed.
 - (2) Arbitrary intersection of closed sets are closed.
 - (3) Finite union of closed sets are closed.
- 15. (a) Prove that the image of a connected space under a continuous map is connected.
 - (b) State and prove the Lebesgue number lemma. (10+10)
- 16. State and prove Urysohn metrization theorem.
- 17. State and prove Tychonoff's Theorem.
