STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
 (For candidates admitted from the academic year 2019-20 \& thereafter)

SUBJECT CODE : 19MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2023
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE : CORE
PAPER : MEASURE THEORY AND INTEGRATION TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

Answer all the questions:

$$
5 \times 2=10
$$

1. Define Lebesgue outer measure of a set A in \boldsymbol{R}.
2. Show that $\int_{1}^{\infty} \frac{d x}{x}=\infty$.
3. Define the Lebesgue integral of a function f.
4. When is a measure absolutely continuous with respect to another measure?
5. Let f be a function defined on $X \times Y$. What are the $x-$ and y - sections of f ?

> SECTION - B

Answer any five questions:

6. Prove that every interval on the real line is measurable.
7. Let E be a measurable set. Then show that, for each y, the set $E+y$ is also measurable and the measures are the same.
8. State and prove Lebesgue monotone convergence theorem.
9. Define σ - finite, complete measure and show that the Lebesgue measure is σ - finite and complete.
10. State and prove the Hahn Decomposition theorem.
11. Prove that measurable sets have measurable sections.
12. Show that measurability and measure remain invariant under rotation in k dimensions.
SECTION - C

Answer any three questions:

$$
3 \times 20=60
$$

13. (a) Show that there exists a non-measurable set.
(b) Give an example to show that there exists an uncountable set of measure zero.[12 +8]
14. Let f be a bounded function defined on the finite interval $[a, b]$, then prove that f is Riemann integrable over $[a, b]$ if and only if it is continuous a.e.
15. (a) State and prove Fatou's lemma.
(b) The function $f(x), 0 \leq x \leq 1$, is defined as follows:

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x \text { is rational } \tag{12+8}\\
n & \text { if } x \text { is irrational }
\end{array} \text { where } n\right. \text { is the number of zeros immediately after }
$$ the decimal point, in the representation of x on the decimal scale. Show that f is measurable and find $\int_{0}^{1} f d x$.

16. (a) State and prove Radon Nikodym Theorem.
(b) Show that the theorem is true for signed measure also.
$[15+5]$
17. State and prove Fubini's theorem.
