STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE: 19MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2023 **BRANCH I – MATHEMATICS SECOND SEMESTER**

COURSE : CORE

PAPER : MEASURE THEORY AND INTEGRATION

TIME MAX. MARKS: 100 **: 3 HOURS**

SECTION - A

Answer all the questions:

 $5 \times 2 = 10$

- 1. Define Lebesgue outer measure of a set A in \mathcal{R} .
- 2. Show that $\int_1^\infty \frac{dx}{x} = \infty$.
- 3. Define the Lebesgue integral of a function f.
- 4. When is a measure absolutely continuous with respect to another measure?
- 5. Let f be a function defined on $X \times Y$. What are the x and y sections of f?

SECTION - B

Answer any five questions:

 $5 \times 6 = 30$

- 6. Prove that every interval on the real line is measurable.
- 7. Let E be a measurable set. Then show that, for each y, the set E + y is also measurable and the measures are the same.
- 8. State and prove Lebesgue monotone convergence theorem.
- 9. Define σ finite, complete measure and show that the Lebesgue measure is σ finite and complete.
- 10. State and prove the Hahn Decomposition theorem.
- 11. Prove that measurable sets have measurable sections.
- 12. Show that measurability and measure remain invariant under rotation in *k* dimensions.

SECTION - C

Answer any three questions:

 $3 \times 20 = 60$

- 13. (a) Show that there exists a non-measurable set.
 - (b) Give an example to show that there exists an uncountable set of measure zero. [12 + 8]
- 14. Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e.
- 15. (a) State and prove Fatou's lemma.

(b) The function f(x), $0 \le x \le 1$, is defined as follows: $f(x) = \begin{cases} 0 & \text{if } x \text{ is } rational \\ n & \text{if } x \text{ is } irrational \end{cases}$ where n is the number of zeros immediately after

the decimal point, in the representation of x on the decimal scale. Show that f is measurable and find $\int_0^1 f \ dx$. [12 + 8]

- 16. (a) State and prove Radon Nikodym Theorem.
 - (b) Show that the theorem is true for signed measure also.

[15 + 5]

17. State and prove Fubini's theorem.

