STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
 (For candidates admitted from the academic year 2019-20 \& thereafter)

SUBJECT CODE : 19MT/PC/LA24

M. Sc. DEGREE EXAMINATION, APRIL 2023
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE : CORE
 PAPER : LINEAR ALGEBRA
 TIME

MAX. MARKS : 100

Section-A
 Answer ALL the questions

$(5 \times 2=10)$

1. Define similar matrices and what is the number of similarity classes of 4×4 nilpotent matrices over a field F ?
2. Define the Companion matrix of the polynomial $f(x)=\gamma_{0}+\gamma_{1} x+\ldots+\gamma_{r-1} x^{r-1}+x^{r} \in F[x]$.
3. If $T: R^{2} \rightarrow R^{2}$ is a linear transformation whose matrix with respect to the standard basis of R^{2} is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, then find all the subspaces of R^{2} invariant under T.
4. Define an orthogonal matrix and what can you say about the determinant of an orthogonal matrix?
5. Define a bilinear form on a vector space and give an example.

Section-B
 Answer any FIVE questions

6. If S and T are nilpotent transformations which commute, prove that $S T$ and $S+T$ are nilpotent transformations.
7. Suppose that $V=V_{1} \oplus V_{2}$, where V_{1} and V_{2} are subspaces of V invariant under T. Let T_{1} and T_{2} be the linear transformation induced by $T o n V_{1}$ and V_{2}, respectively. If the minimal polynomial of T_{1} over F is $p_{1}(x)$ while that of T_{2} is $p_{2}(x)$, then prove that the minimal polynomial for T over F is the least common multiple of $p_{1}(x)$ and $p_{2}(x)$.
8. Let T be a linear operator on an n-dimensional vector space V. Then prove that the characteristic and minimal polynomials for T have the same roots, except for multiplicities.
9. Prove that for any linear operator T on a finite dimensional inner product space V, there is a unique linear operator T^{*} on V such that $(T \alpha \mid \beta)=\left(\alpha \mid T^{*} \beta\right)$, for all $\alpha, \beta \in V$.
10. Let V be a complex vector space and f a form on V such that $f(\alpha, \alpha)$ is real for every α. Then prove that f is Hermitian.
11. If V is n-dimensional vector space over F and if $T \in A(V)$ has all its characteristic roots in F, then prove that T satisfies a polynomial of degree n over F.
12. Let F be the field of real numbers or the field of complex numbers. Let A be an $n \times n$ matrix over F. The function g defined by $g(X, Y)=Y^{*} A X$ is a positive form on the space $F^{n \times 1}$ if and only if there is an invertible $n \times n$ matrix P with entries in F such that $A=P * P$.

Section-C
 Answer any THREE questions

($3 \times 20=60$)
13. (a) If $T \in A_{F}(V)$ is nilpotent, of index of nilpotent n_{1}, then prove that there is a basis of V in which the matrix of T has the form $\left[\begin{array}{cccc}M_{n_{1}} & 0 & \cdots & 0 \\ 0 & M_{n_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & M_{n_{r}}\end{array}\right]$ where $n_{1} \geq n_{2} \geq \cdots \geq n_{r}$ and where $n_{1}+n_{2}+\cdots+n_{r}=\operatorname{dim}_{F}(V)$.
(b) Find the characteristic roots of the matrix $\left(\begin{array}{ccc}5 & 2 & 0 \\ 2 & 5 & 0 \\ -3 & 4 & 6\end{array}\right)$. Is this triangulizable over the field of rational numbers? Give reasons for your answer.
14. (a) Prove that two elements S and T in $A_{F}(V)$ are similar in $A_{F}(V)$ if and only if they have the same elementary divisors.
(b) Suppose the two matrices A, B in F_{n} are similar in K_{n} where K is an extension of F. Prove that A and B are already similar in F_{n}.
15. (a) Let T be a linear operator on a finite dimensional vector space V. If f is the characteristic polynomial for T, then prove that $f(T)=0$.
(b) Let V be a finite dimensional vector space over a field F and let T be a linear operator on V. Then prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{k}\right)$, where $c_{1}, c_{2}, \cdots, c_{k}$ are distinct elements.
16. (a) Let V be a finite-dimensional inner product space, and f a linear functional on V. Then prove that there exists a unique vector β in V such that $f(\alpha)=(\alpha \mid \beta)$, for all α in V.
(b) Whether the result given in (a) is true if V is infinite dimensional? If it is true, prove the result for infinite dimensional inner product space. If the result is false, give a counter example to disprove it.
(10+10)
17. (a) Let V be a finite dimensional inner product space and f be form on V. Prove that there is a unique linear operator T on V such that $f(\alpha, \beta)=(T \alpha \mid \beta)$, for all α, β in V, and the map $f \rightarrow T$ is an isomorphism of space of forms onto $L(V, V)$.
(b) State and prove Principal Axis theorem.

aAAAAAAAAAAA

