STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-600 086 (For candidates admitted during the academic year 2019 – 20 & thereafter)

SUBJECT CODE: 19MT/PC/DG44

M.Sc. DEGREE EXAMINATION, APRIL 2023 BRANCH I – MATHEMATICS FOURTH SEMESTER

TITLE: DIFFERENTIAL GEOMETRY

CORE: CORE

TIME: 3 HOURS MAX: 100 MARKS

SECTION - A

Answer all the questions $(5 \times 2 = 10)$

- 1. Define unit speed curve.
- 2. When a surface is said to be smooth? Give an example.
- 3. Show that every isometry is a conformal map.
- 4. Define principal curvatures.
- 5. Prove that any geodesic has constant speed.

SECTION - B

Answer any five questions $(5 \times 6 = 30)$

- 6. Define arc length and calculate it for the catenary $\gamma(t) = (t, cosht)$ starting at the point (0,1).
- 7. Find the equation of the tangent plane of the surface $\sigma(r,\theta) = (r\cosh\theta, r\sinh\theta, r^2)$ at (1,0,1).
- 8. Calculate the first fundamental form of a sphere $\sigma(\theta, \varphi) = (\cos\theta \cos\varphi, \cos\theta \sin\varphi, \sin\theta)$.
- 9. State and prove Meusnier's theorem.
- 10. Let N be the standard unit normal of a surface patch $\sigma(u, v)$. Then prove that

$$N_u = a\sigma_u + b\sigma_v$$
 and $N_v = c\sigma_u + d\sigma_v$ where $\begin{pmatrix} a & c \\ b & d \end{pmatrix} = -\mathcal{F}_I^{-1}\mathcal{F}_{II}$.

- 11. Find the gaussian curvature, mean curvature and principal curvatures for any surface patch $\sigma(u, v)$.
- 12. Prove that a curve on a surface is a geodesic if and only if its geodesic curvature is zero everywhere.

- 13. Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 . Then prove that its curvature is $\kappa = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3}$ and its torsion is $\tau = \frac{(\dot{\gamma} \times \ddot{\gamma}) \cdot \ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|^2}$.
- 14. (a) Let U and \widetilde{U} be open subsets of \mathbb{R}^2 and let $\sigma: U \to \mathbb{R}^3$ be a regular surface patch. Let $\Phi: \widetilde{U} \to U$ be a bijective smooth map with smooth inverse map $\Phi^{-1}: U \to \widetilde{U}$. Then prove that $\widetilde{\sigma} = \sigma \circ \Phi: \widetilde{U} \to \mathbb{R}^3$ is a regular surface patch.
 - (b) Describe an atlas for the surface obtained by translating a curve. (10+10)
- 15. Prove that a diffeomorphism $f: S_1 \to S_2$ is conformal if and only if, for any surface patch σ_1 on S_1 , the first fundamental forms of σ_1 and $f \circ \sigma_1$ are proportional.
- 16. (a) State and prove Euler's theorem.
 - (b) Compute the second fundamental form of the elliptic paraboloid $\sigma(u,v) = (u,v,u^2+v^2). \tag{10+10}$
- 17. Prove that the gaussian curvature of a surface is preserved by isometrics.
