STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086 (For candidates admitted during the academic year 2019 – 20 & thereafter)

SUBJECT CODE: 19MT/PC/CF44

M.Sc. DEGREE EXAMINATION, April 2023 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE: CORE

PAPER : CONTINUUM AND FLUID MECHANICS

TIME : 3 HOURS MAX. MARKS : 100

Section – A Answer **ALL** questions $(5 \times 2 = 10)$

- 1. State any two substitution properties of Kronecker δ .
- 2. Write the equation of motion in Lagrangian formulation.
- 3. Define viscous fluid with an example.
- 4. Discuss the conditions at the boundary of two inviscid immiscible fluids.
- 5. Is Reynolds number dimensional? Explain it.

Section – B Answer **ANY FIVE** questions $(5 \times 6 = 30)$

- 6. Given that $a_{ij} = \alpha \delta_{ij} b_{kk} + \beta b_{ij}$ where $\beta \neq 0$, $3\alpha + \beta \neq 0$, find b_{ij} in terms of a_{ij} .
- 7. The Lagrangian description of a deformation is given by $x_1 = X_1 + X_3(e^2 1)$, $x_2 = X_2 + X_3(e^2 e^{-2})$, $x_3 = e^2 X_3$, where e is a constant. Show that the Jacobian J does not vanish and determine the Eulerian equations describing this motion.
- 8. Derive the equation of continuity.
- 9. Explain the uniform flow past a fixed infinite circular cylinder.
- 10. Show that $\begin{bmatrix} e_i' & e_j' & e_k' \end{bmatrix} = \begin{vmatrix} \alpha_{i1} & \alpha_{i2} & \alpha_{i3} \\ \alpha_{j1} & \alpha_{j2} & \alpha_{j3} \\ \alpha_{k1} & \alpha_{k2} & \alpha_{k3} \end{vmatrix}$ and hence, deduce that $\det \alpha_{ij} = 1$.
- 11. State and prove uniqueness theorem.
- 12. Discuss the flow for which $w = z^2$.

Section – C Answer **ANY THREE** questions $(3 \times 20 = 60)$

- 13. If a_{ij} are components of an isotropic tensor (of second order), then prove that $a_{ij} = \alpha \delta_{ij}$ for some scalar α .
- 14. The stress tensor values at P are given by the array $\Sigma = \begin{pmatrix} 7 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Determine the traction (stress) vector on the plane at P whose unit normal is $n = \left(\frac{2}{3}\right)\hat{e}_1 \left(\frac{2}{3}\right)\hat{e}_2 + \left(\frac{1}{3}\right)\hat{e}_3$ and for the traction vector find (i) the component perpendicular to the plane (ii) the magnitude of $t_i^{(n)}$ (iii) the angle between $t_i^{(n)}$ and n.
- 15. Test whether the motion specified by $q = \frac{k^2(x \vec{j} y \vec{i})}{x^2 + y^2}$ (k = constant) is a possible motion for an incompressible fluid. If so, determine the equations of streamlines. Also test whether the motion is of the potential kind and if so determine the velocity potential.
- 16. Derive (a) Euler's equation of motion (b) Bernoulli's Equation.
- 17. Discuss the steady motion between parallel planes.
