STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted from the academic year 2019-20 and thereafter)

SUBJECT CODE: 19CH/PE/CP15

M. Sc. DEGREE EXAMINATION, APRIL 2023 BRANCH IV- CHEMISTRY FOURTH SEMESTER

COUR PAPE TIME	R : CORROSIO	N AND ITS PREVE		X MARKS: 100
		Section – A		
Answer ALL the questions:				$20 \times 1 = 20 \text{ marks}$
Choos	e the Correct Answe	er:		
1.	. The standard electrode potentials for the calomel electrode in saturated KCl solution			
	at 25 °C is a. 0.3338 V	b. 0.2800 V	c. 0.2415 V	d. 0.1542 V
2.	2. Which of the following is anodic inhibitor?			
	a. Na ₂ CrO ₄	b. NaNO ₂	c. Na ₂ HPO ₄	d. all of these
3. The SI unit to express corrosion rate is				
0.	a. g.m ⁻² d ⁻¹	b. μA/cm ²	c. mm/y	d. μm/y
4.	4. Which one of the following ion can act as sacrificial anode?			
••	a. Li ⁺	b. Mg ²⁺	c. Ca ⁺	d. K ⁺
5.	A plot of η vs $\log i$ is	s known as		
	a. Stern model		c. CV diagram	d. OCP
Fill in	the blanks:			
	The equilibrium constant of a cell reaction can be calculated using the equation			
7.	diagram provides information about the stability of a metal as a function of pH			
R	and potential. The potential produced when a liquid is forced through a diaphragm or a capillary			
0.	tube is known as			
9.	Effective corrosion inhibitor organic compound is			
10	is a popular	test used to study con	rosion.	
Trua (or False:			
		d that the electrical ed	quivalent of the double	e layer is a parallel
	plate capacitor.		1	7 1
	2. Pitting corrosion normally extended to the surface.			
13.	13. Exchange current density is depending on the composition of the metal on the			
14	solution. Titanium exhibits ve	ry high corrosion rate	in chloride environme	ent
	4. Titanium exhibits very high corrosion rate in chloride environment.5. In the open circuit potential the current cannot flow from one end of the power source			

to the other.

Match the following:

16. Evans diagram

- a. E vs current density (A/m²)

17. Pourbaix diagram

- b. i vs E (V vs Ag/AgCl)

18. Cyclic voltammetry

- c. E(V vs SHE) vs logI

19. Polarisation resistance - d. current density vs E (V vs SCE)

20. Electron impendence spectroscopy - e. (V vs SCE) E vs pH

21. Calculate the emf for the cell

a. $Zn(s)/Zn^{2+}$ (aq, 0.1M)//Fe²⁺(aq,0.001M)/Fe(s)

 $E^{o}_{Zn}^{2+}/_{Zn} = -0.763 \text{ V}$ and $E^{o}_{Fe}^{2+}/_{Fe} = -0.44 \text{ V}$ (4) b. Calculate the equilibrium constant for the reaction

 $5 \text{ Fe}^{2+} + \text{MnO}_4^- + 8\text{H}^+ \longrightarrow \text{Mn}^{2+} + 4 \text{ H}_2\text{O} + 5 \text{ Fe}^{3+} \text{ at } 25 \text{ }^{\circ}\text{C}.$

$$E^{o}_{Fe}^{3+}/_{Fe}^{2+} = 0.77 \text{ V}$$
; $Eo_{MnO4}/_{Mn}^{2+} = 1.51 \text{ V}$

- 22. Explain in detailed about microbial influenced corrosion.
- 23. How is corrosion rate determined? Discuss in detail.
- 24. Enumerate with examples organic and polymer coating.
- 25. Draw and discuss the Tafel plot for an aluminium alloys.
- 26. How does AC impedance method used in corrosion testing?
- 27. What are the factors affect the corrosion?

- 28. a. Derive and explain Nernst equation? (8)
 - b. Describe the different types of electrochemical corrosion. (12)
- 29. a. What are the types of polarisation? Explain it in detail. (10)
 - b. What is cathodic protection? Discuss its classification and the process involved in it. (10)
- 30. a. Give the Principle and experimental set up for Small Amplitude Cyclic

Voltammetry. (8)

- b. Discuss slow strain rate test for the calculation of AC impedance (4)
- b. How is material surfaces protected against corrosion? What is the role of corrosion inhibitors in the field of surface engineering? (8)
