STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600086

(For candidates admitted from the academic year 2019 \& thereafter)
SUBJECT CODE: 19CH/ME/CC45
B.Sc. DEGREE EXAMINATION, APRIL 2023

BRANCH IV - CHEMISTRY
SIXTH SEMESTER

COURSE: MAJOR ELECTIVE

PAPER: COMPUTERS IN CHEMISTRY
TIME : 3 HOURS
MAX. MARKS: 100

SECTION-A

Answer all the Questions

($30 \times 1=30$)

I. Choose the correct answers:

1. To obtain symbols from chemdraw \qquad menu bar is used
a) object
b) view
c) structure
d) text
2. The stereochemistry of a compound can be obtained from chemdraw from the tool bar option \qquad
a) structure $>$ structure tool > show stereochemistry
b) structure > view tool > show stereochemistry
c) structure $>$ object tool $>$ show stereochemistry
d) structure > edit tool > show stereochemistry
3. The radical cation representation in a molecule can be represented by using \qquad
a) query
b) structure
c) templates
d) chemical symbols
4. The shortcut key used to find and replace in a word document is \qquad
a) $\mathrm{Ctrl}+\mathrm{S}$
b) Shift +S
c) $\mathrm{Ctrl}+\mathrm{H}$
d) $\mathrm{Shift}+\mathrm{H}$
5. To define a variable in Mathcad \qquad is used.
a) Shift+.
b) $\mathrm{Ctrl}+$.
c) Shift+;
d) Ctrl+;
6. The tool used to label an atom in a molecule is \qquad
a)

b)

c)

d)

7. A cell is in the fourth column and sixth row of the spreadsheet. It is defined as
a) D6
b) F4
c) A 4
d) B6
8. Using Chemdraw 3D, the \qquad in molecules can be determined.
a) Bond length
b) bond order
c) close contacts
d) all the above
9. The equation of line in a graph using excel is found from \qquad
a) Format horizontal axis
b) Title
c) Add Trendline
d) Add Gridlines
10. The elemental symbols for a molecule are obtained by \qquad
a) Select the molecule \rightarrow Analyze \rightarrow Show elemental symbols
b) Select the molecule \rightarrow Tools \rightarrow Show elemental symbols
c) Select the molecule \rightarrow Object \rightarrow Show elemental symbols
d) Select the molecule \rightarrow View \rightarrow Show elemental symbols

II. Fill in the blanks:

11. \qquad tool is used for selecting a text or structure in chemdraw
12. The intercept for equation of line $\mathrm{y}=\mathrm{mx}$ graph is fixed at \qquad .
13. The IUPAC nomenclature of
 is \qquad .
14. The function used for standard deviation is \qquad .
15 . The short key for inserting matrix is \qquad
15. The symbol \qquad
16. In Mathcad, a: 1; 20 implies the values of a are \qquad .
17. The Gibbs energy of benzoic acid is found to be \qquad from chemdraw.
18. A formula is introduced in a cell in MSEXCEL by starting with an \qquad .
19. The process of removing unwanted part of an image is called \qquad .
III. State True or False:
20. Cell is a basic unit of a worksheet
21. Pie chart is useful for comparing values over categories
22. Workbook is a collection of work sheets.
23. Line chart is useful for showing trends or changes over time

25 . Error bars in a plot are not related to standard deviation.

IV. Answer in a line:

26. What is hyperlink?
27. Give any two uses of EXCEL
28. What is character map window?
29. What is MOPAC?
30. What are the tools present in Math?

SECTION B

V. Answer any five of the following:

($5 \times 6=30$)
31. Using chemdraw (i) draw \& name the compound (ii) Evaluate -C-Br, C-N, C-O and N-H bond lengths (iii) Find Minimize energy for the compound given below: [2+2+2]

32. he following data were collected as part of a quality control study for the analysis of Na in serum; results are concentrations of Na^{+}in $\mathrm{mmol} / \mathrm{L} .140,143,141,137,132,157,143$, $149,118 \& 145$. Find the mean, median, mode, standard deviation and variance for the above data.
33. Using Mathlab solve the following equations: [3+3]
(i) If $y=\frac{x-4}{2 \sqrt{x}}$ find $\frac{d y}{d x}$ at $x=4$
(ii) Evaluate: $\int \frac{1}{9-4 x^{2}} d x$
34. Calculate molar absorption coefficient by calculation for the following data. Plot a graph of absorbance versus concentration from the following data and calculate the molar absorption coefficient (ε) from slope. $\mathrm{A}=\varepsilon \mathrm{bC}$, where $\varepsilon=$ Molar absorption coefficient $L^{-1}{ }^{-} \mathrm{cm}^{-}$, path length $=1 \mathrm{~cm}$ and A is absorbance. Graph of A verses C gives Slope $=\varepsilon$.

Concentration of Malachite green (molarity) $\mathbf{x 1 0}$	Absorbance A (unitless)
0.2	0.145
0.4	0.254
0.6	0.376
0.8	0.452
1.0	0.559
1.2	0.662
1.4	0.770
1.6	0.818

35. Draw the following structures using the templates in chemdraw and give the name of template used.
i.

ii.

v.

vi.

36. Find out the $\%$ composition of elements for the following using chemdraw. and plot a bar

aniline

acetamide

(1Z)-1-nitroprop-1-ene
graph \% composition of elements vs Compounds using MS Excel.
37. Convert the following SI units (Mathcad)
(i) $4.1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ to gal
(ii) 328.56 T to gauss
(iii) 425 atm to psi
(iv) 178 kW to hp
(v) 785.28 F to pF
(vi) 20.35 kW to ehp

SECTION C

VI. Answer any two of the following:

38. a. Complete the following table and plot a combined graph of ψ and ψ^{2} verses x for $\mathrm{n}=1$ and $\mathrm{n}=2$. Given $\mathrm{a}=10 \mathrm{~nm}$. (10)
plots to be plotted
i. $\quad \psi$ vs x for $(n=1, n=2)$
ii. $\quad \psi^{2}$ vs x for $(\mathrm{n}=1, \mathrm{n}=2)$
iii. $\quad \psi \& \psi^{2}$ vs x for $n=1$
iv. $\psi \& \psi^{2}$ vs x for $\mathrm{n}=2$

x nm	$\psi=\sqrt{\frac{2}{a}} \operatorname{Sin}(\mathrm{n} \pi \mathrm{x} / \mathrm{a})$		ψ^{2}	
	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=1$	$\mathrm{n}=2$
0				
2				
4				
5				
6				
8				
10				

b. Draw the following mechanism using chemdraw [6]

c. Find dihedral angles of $\mathrm{Cl}-\mathrm{C}-\mathrm{C}-\mathrm{H}, \mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ in the given compound [4]

39. a. Using Excel draw the pie chart for the following data. [5]

Method of Analysis	\% Chromium
1	36
2	45
3	20
4	7
5	65

b. Find the C-O bond length and bond order in diethyl ether and benzoic acid using Chemdraw 3D. [4]
c. Draw chem 3D for the following compounds and evaluate the solvent accessibility using chemdraw [6]
(i)

(ii)

(iii)

d. Evaluate determinant, inverse, transpose, eigenvalues and eigenvectors for the given matrix [5]

$$
A=\left(\begin{array}{ccc}
4 & 5 & 9 \\
1 & 10 & 7 \\
8 & 15 & 3
\end{array}\right)
$$

40. a. The following data was obtained for the kinetic study of hydrolysis of methyl acetate.

Given $\mathrm{T} \infty=49.5 \mathrm{~mL}$. From the table $\mathrm{T}_{0}=23.2 \mathrm{ml}, \mathrm{a}=(\mathrm{T} \infty-\mathrm{To}) \mathrm{mL}$

t in minutes	$\mathrm{T}_{\mathrm{t}} \mathrm{mL}$	$\mathrm{x}=(\mathrm{Tt}-$ $\mathrm{To}) \mathrm{mL}$	$\mathrm{a}-\mathrm{x}$	$\log (\mathrm{a} /(\mathrm{a}-\mathrm{x}))$	k
0	23.2				
10	23.7				
20	24.2				
30	24.1				
40	24.5				
50	24.9				
60	25.3				

Calculate $\mathrm{k}=\frac{2.303}{t}\left[\log _{10} \frac{a}{a-x}\right]$ by calculation. Also evaluate k from a plot of $\log (\mathrm{a}-\mathrm{x})$ verses t . slope $=-\frac{k}{2.303}$. Compare the k values from graph and calculation. (8)
b. Plot Atomic number of elements vs Ionisation Energy graph from the given data using Mathcad
(6)

Atomic number of elements	1	2	3	4	5	6	7	8	9	10
Ionisation Energy of elements kJ/mol	1312	2372.1	520.1	899.3	800.1	1086.2	1402.1	1313.7	1680.8	2080.4

c. Following is the data (specific conductivity for each addition of sodium hydroxide) for conductometric titration of a HCl and NaOH . Evaluate the end point from graph from the graph. From the end point find the strength of given acid. (4)

Volume of 0.25 M NaOH in mL	Specific conductance $\mathrm{mS} / \mathrm{cm}$
0	27.8
1	25.6
2	23.45
3	21.98
4	19.32
5	17.47
6	15.22
7	12.48
8	14.45
9	16.87
10	18.64
11	20.44
12	22.39
13	24.78
14	26.99
15	28.21

d. Find $2 \boldsymbol{A}-\boldsymbol{B}^{2}+\mathbf{3 C}$ from the given matrices. (Mathcad)
$\mathrm{A}=\left(\begin{array}{cc}2.5 & 5 \\ 9 & 8.3\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{cc}1.5 & 10 \\ -4.3 & 11\end{array}\right) \quad \mathrm{C}=\left(\begin{array}{cc}6.8 & 11 \\ 7 & 2.5\end{array}\right)$

