B. Sc. DEGREE EXAMINATION, APRIL 2023
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE	$:$ MAJOR CORE
PAPER	$:$ VECTOR SPACES AND LINEAR TRANSFORMATIONS
TIME	$: 3$ HOURS
MAX. MARKS : 100	

SECTION - A

ANSWER ANY TEN QUESTIONS.

$(10 \times 2=20)$

1. Define vector space.
2. Let W be the set of vectors of the form (a, a, a+2). Show that \boldsymbol{W} is not a subspace of \boldsymbol{R}^{3}.
3. Define rank of a matrix.
4. State orthogonal matrix theorem.
5. Define an orthogonal matrix.
6. Find the co-ordinate vector of $\boldsymbol{v}=(\mathbf{4}, \mathbf{0},-\mathbf{2})$ in $\boldsymbol{R}^{\mathbf{3}}$ relative to the orthonormal basis $B=\{(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{0}, \mathbf{1}, \mathbf{0}),(\mathbf{0}, \mathbf{0}, \mathbf{1})\}$.
7. Define Isomorphic vector spaces.
8. Prove that the functions $(\boldsymbol{x})=\boldsymbol{x}^{2}$ and $\boldsymbol{g}(\boldsymbol{x})=\mathbf{4 x}-\mathbf{3}$ over [0, 1] are orthogonal.
9. If $\boldsymbol{u}=(\mathbf{2}+\mathbf{3 i},-\mathbf{1}+\mathbf{5 i}), \boldsymbol{v}=(\mathbf{1}+\boldsymbol{i},-\boldsymbol{i})$ in \boldsymbol{C}^{2}. Compute $\|\boldsymbol{u}\| \&\|\boldsymbol{v}\| \&(\boldsymbol{u}, \boldsymbol{v})$.
10. If $f(x)=2 x, g(x)=4-2 x$. Compute $f+g, 3 f$ and $-\boldsymbol{g}$.
11. Define matrix transformation.
12. When a matrix is said to be orthogonally diagonalizable?

SECTION -B

ANSWER ANY FIVE QUESTIONS.

$$
(5 \times 8=40)
$$

13. Let V be a vector space, $\mathbf{0}$ the zero vector of \boldsymbol{V}, c a scalar. Then prove that
(a) $\mathbf{0} \boldsymbol{v}=\mathbf{0}$
(b) $c \mathbf{0}=\mathbf{0}$
(c) $(-\mathbf{1})=\boldsymbol{v}$
(d) If $\boldsymbol{c v}=\mathbf{0}$ then either $\boldsymbol{c}=\mathbf{0}$ or $\boldsymbol{v}=.0$
14. Find a basis for the row space of the following matrix A and determine its rank
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & 1 & 5\end{array}\right]$
15. Prove that an orthogonal set of non-zero vectors in a vector space is linearly independent.
16. Let \boldsymbol{B} and \boldsymbol{B}^{\prime} be bases for a vector space \boldsymbol{U} and \boldsymbol{P} be the transition matrix from \boldsymbol{B} to \boldsymbol{B}^{\prime}. Then prove \boldsymbol{P} is invertible and the transition matrix from \boldsymbol{B}^{\prime} to \boldsymbol{B} is $\boldsymbol{P}^{\mathbf{1}}$.
17. Find the fourth order Fourier approximation to $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$ over the interval $[-\boldsymbol{\pi}, \boldsymbol{\pi}]$.
18. Prove that the set $\{(\mathbf{1}, \mathbf{3},-\mathbf{1}),(\mathbf{2}, \mathbf{1}, \mathbf{0}),(\mathbf{4}, \mathbf{2}, \mathbf{1})\}$ is a basis for $\boldsymbol{R}^{\mathbf{3}}$.
19. Prove that a linear transformation \boldsymbol{T} is one-to-one if and only if the kernel is the zero vector.

SECTION -C

ANSWER ANY TWO QUESTIONS.

$$
(2 \times 20=40)
$$

20. (a) Prove that the set \boldsymbol{U} of $\mathbf{2} \times \mathbf{2}$ diagonal matrices is a subspace of the vector spaces $\boldsymbol{M} \mathbf{2 2}$ of $\mathbf{2} \times \mathbf{2}$ matrices.
(b) Determine whether the vector $(\mathbf{8}, \mathbf{0}, \mathbf{5})$ is a linear combination of the vectors $(\mathbf{1}, 2,3),(\mathbf{0}, \mathbf{1}, 4)$ and $(\mathbf{2},-\mathbf{1}, \mathbf{1})$ in $\boldsymbol{R}^{\mathbf{3}}$.
21. (a) State and prove Gram Schmidt Orthogonalization process.
(b) Solve the following homogenous system of linear equations. Interpret the setof solutions as a subspace, sketch the subspace of solutions.

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =0 \\
-x_{1}+x_{2} & =0 \\
x_{1}+x_{2}+4 x_{3} & =0
\end{aligned}
$$

22. (a) (i) Show that the matrix A is diagonalizable and (ii) Find a diagonal matrix D similar to A where $\mathrm{A}=\left[\begin{array}{cc}-4 & -6 \\ 3 & 5\end{array}\right]$.
(b) Find the least squares line for the following data points $(1,1),(2,2.4),(3,3.6),(4,4)$.
