STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE : 19MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2023 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	: MAJOR CORE		
PAPER	: VECTOR SPACES AND LINEAR TRAN	VECTOR SPACES AND LINEAR TRANSFORMATIONS	
TIME	: 3 HOURS	MAX. MARKS : 100	

SECTION – A

ANSWER ANY TEN QUESTIONS.

 $(10 \times 2 = 20)$

- 1. Define vector space.
- Let W be the set of vectors of the form (a, a, a + 2). Show that W is not a subspace of R³.
- 3. Define rank of a matrix.
- 4. State orthogonal matrix theorem.
- 5. Define an orthogonal matrix.
- 6. Find the co-ordinate vector of v = (4, 0, -2) in R^3 relative to the orthonormal basis $B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$
- 7. Define Isomorphic vector spaces.
- 8. Prove that the functions $(x) = x^2$ and g(x) = 4x 3 over [0, 1] are orthogonal.
- 9. If u = (2 + 3i, -1 + 5i), v = (1 + i, -i) in C^2 . Compute ||u|| & ||v|| & (u, v).
- 10. If f(x) = 2x, g(x) = 4 2x. Compute f + g, 3f and -g.
- 11. Define matrix transformation.
- 12. When a matrix is said to be orthogonally diagonalizable?

SECTION – B

ANSWER ANY FIVE QUESTIONS.

 $(5 \times 8 = 40)$

- 13. Let V be a vector space, $\mathbf{0}$ the zero vector of V, c a scalar. Then prove that
 - (a) $\mathbf{0}\mathbf{v} = \mathbf{0}$ (b) $c\mathbf{0} = \mathbf{0}$ (c) $(-\mathbf{1}) = \mathbf{v}$
 - (d) If cv = 0 then either c = 0 or v = .0
- 14. Find a basis for the row space of the following matrix A and determine its rank

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & 1 & 5 \end{bmatrix}$$

- 15. Prove that an orthogonal set of non-zero vectors in a vector space is linearly independent.
- 16. Let **B** and **B**' be bases for a vector space **U** and **P** be the transition matrix from **B** to **B**'. Then prove **P** is invertible and the transition matrix from **B**' to **B** is P^{-1} .
- 17. Find the fourth order Fourier approximation to f(x) = x over the interval $[-\pi, \pi]$.
- 18. Prove that the set {(1, 3, -1), (2, 1, 0), (4, 2, 1)} is a basis for **R**³.
- 19. Prove that a linear transformation T is one-to-one if and only if the kernel is the zero vector.

 $(2 \times 20 = 40)$

SECTION -C

ANSWER ANY TWO QUESTIONS.

- 20. (a) Prove that the set U of 2×2 diagonal matrices is a subspace of the vector spaces M_{22} of 2×2 matrices.
 - (b) Determine whether the vector (8, 0, 5) is a linear combination of the vectors (1, 2, 3), (0, 1, 4) and (2, -1, 1) in R³.
- 21. (a) State and prove Gram Schmidt Orthogonalization process.
 - (b) Solve the following homogenous system of linear equations. Interpret the set of solutions as a subspace, sketch the subspace of solutions.

$$x_1 + 2x_2 + 3x_3 = 0$$

-x_1 + x_2 = 0
$$x_1 + x_2 + 4x_3 = 0.$$

- 22. (a) (i) Show that the matrix A is diagonalizable and (ii) Find a diagonal matrix D similar to A where A = $\begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$.
 - (b) Find the least squares line for the following data points
 (1, 1), (2, 2, 4), (3, 3, 6), (4, 4).