STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

SUBJECT CODE: 19MT/MC/SS44

B. Sc. DEGREE EXAMINATION, APRIL 2023 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : MAJOR CORE

PAPER : SEQUENCE AND SERIES

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ANY TEN QUESTIONS:

 $(10 \times 2 = 20)$

- 1. Define characteristic function of a subset A.
- 2. Prove that if B is a countable subset of uncountable set A, then A B is uncountable.
- 3. Define convergent sequence.
- 4. What is a Monotone sequence and give an example.
- 5. Define Cauchy sequence.
- 6. Differentiate conditional convergence and absolute convergence of series.
- 7. Explain domination of series with an example.
- 8. State Abel's lemma.
- 9. Find the limit superior and limit inferior of $\left\{ (1 + \frac{1}{n})^n \right\}_{n=1}^{\infty}$.
- 10. Evaluate $\lim_{n\to\infty} \sqrt{n}(\sqrt{n+1} \sqrt{n})$.
- 11. State the Dirichlet's conditions for Fourier series expansion.
- 12. Write the half range cosine series of f(x).

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

- 13. Show that the inverse image of the union of two sets is the union of the inverse images.
- 14. Prove that the set $[0,1] = [x/0 \le x \le 1]$ is uncountable.
- 15. If $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequence of real numbers, if $\lim_{n\to\infty} s_n = L$ and $\lim_{n\to\infty} t_n = M$.

Then prove that a)
$$\lim_{n\to\infty} (s_n + t_n) = L + M$$
 b) $\lim_{n\to\infty} (s_n t_n) = LM$

16. Show that any bounded sequence of real numbers has a convergent subsequence.

- 17. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive real numbers such that
 - (a) $a_1 \ge a_2 \ge a_3 \dots a_n \ge a_{n+1} \dots$ and
 - (b) $\lim_{n\to\infty}a_n=0$ then prove that the alternating series $\sum_{n=1}^\infty (-1)^{n+1}a_n$ is convergent.
- 18. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- 19. Obtain the Fourier series expansion of xsinx in $[-\pi, \pi]$

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40)$

- 20. a) If A_1, A_2, A_3 ... are countable then prove that $\bigcup_{n=1}^{\infty} A_n$ is countable.
 - b) Show that the sequence $\left\{ (1 + \frac{1}{n})^n \right\}_{n=1}^{\infty}$ is convergent.
- 21. a) Prove that the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is Cauchy if and only if it is convergent.
 - b) Let $\sum_{n=1}^{\infty} a_n$ be a series of non-zero real numbers and let $a = \lim_{n \to \infty} \inf \left| \frac{a_{n+1}}{a_n} \right|$, $A = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right|$. Then prove that,
 - 1) If A < 1, then $\sum_{n=1}^{\infty} |a_n| < \infty$;
 - 2) If a > 1 then $\sum_{n=1}^{\infty} a_n$ diverges;
 - 3) If $a \le 1 \le A$, then the test fails.
- 22. a) Find the Fourier series expansion of $f(x) = \begin{cases} -\pi & \text{if } -\pi < x < 0 \\ x & \text{if } 0 < x < \pi \end{cases}$ and deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$
 - b) Expand $\cos x$ in a half range sine series in $0 < x < \pi$.

