STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2019-20 Thereafter)

SUBJECT CODE: 19MT/MC/IC23

B. Sc. DEGREE EXAMINATION, APRIL 2023 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : INTEGRAL CALCULUS

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ANY TEN QUESTIONS:

 $(10 \times 2 = 20)$

- 1. Evaluate: $\int \frac{dx}{\sqrt{x} + \sqrt{1+x}}$.
- 2. Evaluate: $\int (1 + \sin^3 \theta) d\theta$.
- 3. Determine whether the integral $\int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent or divergent.
- 4. Find $\int_{2}^{5} \frac{1}{\sqrt{x-2}} dx$.
- 5. State comparison theorem.
- 6. Define Beta function.
- 7. When *n* is a positive integer, prove that $\Gamma(n) = (n-1)!$.
- 8. Write the integral $\int_0^{\pi/2} \sin^7\theta \cos^5\theta \ d\theta$ in terms of Gamma functions.
- 9. Write down the midpoint rule for double integrals.
- 10. Evaluate: $\int_{1}^{2} \int_{0}^{3} x^{2}y \, dx \, dy$.
- 11. Define triple Riemann sum.
- 12. What is the use of Jacobian?

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

- 13. Evaluate: $\int \frac{dx}{(1+x^2)\sqrt{1-x^2}}$.
- 14. Compute $\int_0^1 \ln x \, dx$.
- 15. Evaluate: $\int_0^1 x^m \left(\log \frac{1}{x}\right)^n dx$.
- 16. Find the volume of the tetrahedron bounded by the planes x + 2y + z = 2, x = 2y, x = 0 and z = 0.

- 17. Evaluate $\iint_E \sqrt{x^2 + z^2} \, dV$ where *E* is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.
- 18. Evaluate: $\int \sqrt{(x-3)(7-x)} dx$.
- 19. Show that $\int_0^\infty e^{-x^2} dx$ is convergent.

SECTION - C

ANSWER ANY TWO QUESTIONS:

$$(2\times20=40)$$

20. (a) Evaluate:
$$\int_0^{\pi/2} \frac{dx}{9 \cos x + 12 \sin x}$$

(b) Prove that
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)} = \pi$$
. (10+10)

- 21. (a) Derive the relation between Beta and Gamma functions.
 - (b) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma functions and hence evaluate the integral $\int_0^1 x^5 (1-x^3)^{10} dx$. (12+8)
- 22. (a) Evaluate $\int \int_R (3x + 4y^2) dA$ where R is the region in the upper half-plane bounded by the circle $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
 - (b) Use the change of variables $x = u^2 v^2$, y = 2uv to evaluate the integral $\int \int_R y \, dA$ where R is the region bounded by x-axis and the parabolas $y^2 = 4 4x$ and $y^2 = 4 + 4x$. (10+10)

