STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted from the academic year 2019-20 \& thereafter)

SUBJECT CODE : 19MT/MC/DM43

B. Sc. DEGREE EXAMINATION, APRIL 2023
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE : MAJOR CORE
PAPER : DISCRETE MATHEMATICS
TIME
: 3 HOURS
MAX. MARKS : 100

SECTION - A

ANSWER ANY TEN QUESTIONS:

$(10 \times 2=20)$

1. Write the following statements in symbolic form:
(i) Roses are red and violets are blue
(ii) If either Jerry takes calculus or Ken takes sociology then Larry will take English.
2. Construct the truth table for $(\neg P \wedge Q)$.
3. Let $G(x, y): x$ is taller than y. Translate the following into formula: "For any x and for any y, if x is taller than y then it is not true that y is taller than $x "$
4. Draw Hasse diagram for $(\rho(A), \subseteq)$ where $A=\{a, b, c\}$.
5. Prove that every finite lattice is bounded.
6. Is the poset $\left(Z^{+}, /\right)$a lattice?
7. If $(B,+,$.$) is a Boolean algebra and if a, b \in B$, prove that $a+a^{\prime} b=a+b$.
8. Define Boolean function.
9. Define complete sequential machine.
10. Find the transition diagram of the finite state automaton $M=\left(I, S, A, s_{0}, f\right)$, where $I=\{0,1\}, S=\left\{s_{0}, s_{1}, s_{2}\right\}, A=\left\{s_{2}\right\}, s_{0}$ is initial state and the transition function f is given by $f\left(s_{0}, 0\right)=s_{1}, f\left(s_{0}, 1\right)=s_{0}, f\left(s_{1}, 0\right)=s_{2}, f\left(s_{1}, 1\right)=s_{0}, f\left(s_{2}, 0\right)=s_{2}, f\left(s_{2}, 1\right)=s_{0}$.
11. Let $L=\left\{a^{m} b^{n}: m, n>0\right\}$ be a language over $A=\{a, b\}$. Find a regular expression r such that $L=L(r)$.
12. Define context-sensitive grammar.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

13. Prove that $(\neg P \wedge(\neg Q \wedge R)) \vee((Q \wedge R) \vee(P \wedge R)) \Leftrightarrow R$ using equivalence laws.
14. State and prove distributive inequalities of Lattice.
15. Let (L, \leq) be a lattice and $a, b, c \in \mathrm{~L}$. If $a \leq b \leq c$ then prove that (i) $a \vee b=b \wedge c$ and (ii) $(a \wedge b) \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.
16. Let a be any element of a Boolean algebra B. Then prove that the complement of a is unique.
17. Obtain the product-of-sums canonical forms of the Boolean expression in three variables x_{1}, x_{2}, x_{3}
(i) $x_{1} x_{2}$
(ii) $x_{1}+x_{2}$
(iii) $\left(x_{1} x_{2}\right)^{\prime}+x_{3}$.
18. Construct a finite state automaton that accepts those strings over $\{0,1\}$ for which the last two input symbols are 1.
19. State and prove Pumping Lemma.

SECTION - C

ANSWER ANY TWO QUESTIONS:
20. (a) Find the conjunctive normal form and disjunctive normal form for :
(i) $\quad p \leftrightarrow(\bar{p} \vee \bar{q})$
(ii) $\quad(p \vee \bar{q}) \rightarrow q$.
(b) Let a, b be elements of a Boolean algebra. Then prove that $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$ and $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$.
21. State and prove idempotent, associative, commutative and absorption properties of Lattice.
22. (a) Let L be a set accepted by a non-deterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L.
(b) Find a context-free grammar G which generates the language $L=\left\{a^{n} b^{n}: n>0\right\}$.

