STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted from the academic year 2019-20 \& thereafter)SUBJECT CODE : 19MT/MC/AG24
B. Sc. DEGREE EXAMINATION, APRIL 2023
BRANCH I - MATHEMATICS
SECOND SEMESTER
PAPER : ANALYTICAL GEOMETRY
MAX. MARKS : 100

COURSE : MAJOR CORE
TIME : 3 HOURS

SECTION A

Answer any ten Questions:
 $10 \times 2=20$

1. Define center of a conic.
2. How do you determine the eccentricity of the conic?
3. Write the formula to find the length of the equi-conjugate diameter of an ellipse.
4. Discuss the angle between the asymptotes?
5. What are the intercepts made by the plane $2 x+3 y+5 z+7=0$ on the coordinate plane?
6. Write the condition that two planes are perpendicular?
7. Find the equation of the line through the point $(3,2,-1)$ and perpendicular to the plane $5 x-4 y+7 z-1=0$.
8. What are skew lines? Give an example.
9. Find the center and radius of the sphere

$$
16 x^{2}+16 y^{2}+16 z^{2}-16 x-8 y-16 z-55=0 .
$$

10. A right circular cone has three mutually perpendicular generators. Prove that the semi vertical angle of the cone is $\tan ^{-1}(\sqrt{2})$.
11. Prove that the following lines $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $\frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}$ are coplanar.
12. Define great circle.

SECTION B

Answer Any Five Questions:

$$
5 \times 8=40
$$

13. Find the center of the conic given by the general second degree equation.
14. Prove that the product of the perpendiculars drawn from any point on a hyperbola to its asymptotes is constant.
15. Find the angle between the planes $2 x-y+z=6, x+y+2 z=3$.
16. Find the image of the point $(2,3,5)$ in the plane $2 x+y-z+2=0$.
17. Find the equation of the sphere passing through the points $(1,0,-1),(2,1,0),(1,1,-1)$ and $(1,1,1)$.
18. Express in symmetrical form the line $4 x+4 y-5 z-12=0,8 x+12 y-13 z-32=0$.
19. Prove that the equation $2 x^{2}+2 y^{2}+7 z^{2}-10 y z-10 z x+2 x+2 y+26 z-17=0$ represents a cone whose vertex is $(2,2,1)$

SECTION C

Answer Any Two Questions:

$$
2 \times 20=40
$$

20. (a) Prove that a general second degree equations will represent a conic.
(b) Prove that the acute angle between two conjugate diameters of an ellipse is minimum when they are equal.
21. (a) Find the shortest distance between the lines $\frac{x-8}{3}=\frac{y+9}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-15}{-5}$ and find the equation of the line of shortest distance.
(b) (i) Find the equation of the plane passing through the points $(9,3,6)$ and $(2,2,1)$ and perpendicular to the plane $2 x+6 y+6 z-9=0$.
(ii) Prove that the tangent to a rectangular hyperbola terminated by its asymptotes is bisected at the point of contact and encloses a triangle of constant area.
22. (a) Find the center and radius of the circle

$$
x^{2}+y^{2}+z^{2}-8 x+4 y+8 z-45=0, x-2 y+2 z=3 .
$$

(b) Find the equation of the right circular cone whose vertex at the origin, whose axis is the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and which has a vertical angle of 60°.

