STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2019 – 2020 and thereafter)

SUBJECT CODE: 19PH/MC/TS23

B.Sc. DEGREE EXAMINATION APRIL 2023 BRANCH III - PHYSICS SECOND SEMESTER

COURSE: MAJOR – CORE

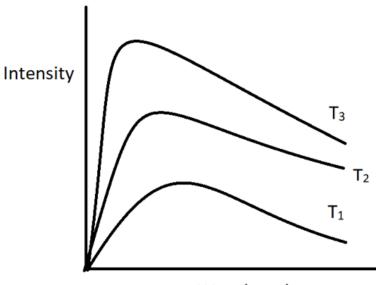
PAPER: THERMAL PHYSICS AND STATISTICAL MECHANICS

TIME': 3 HOURS. MAX. MARKS: 100

SECTION – A

ANSWER ALL QUESTIONS:

I CHOOSE THE CORRECT ANSWER:


 $(10 \times 1 = 10)$

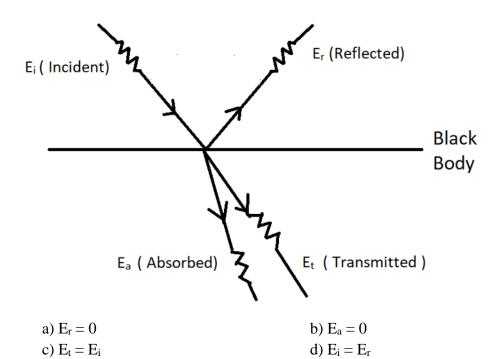
- 1. An iron rod is heated. The colors at different temperatures are noted. Which of the following colors shows that the iron rod is at the lowest temperature?
 - a) Red

b) Orange

c) White

- d) Blue
- 2. From the figure, what's the relation between T_1 , T_2 , and T_3 ?

Wavelength


a)
$$T_1 > T_2 > T_3$$

b)
$$T_3 > T_2 > T_2$$

c)
$$T_3 > T_1 > T_2$$

d)
$$T_2 > T_1 > T_3$$

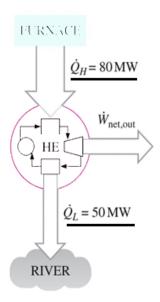
3. What is the relation between the Energies as shown in the figure?

- 4. The absolute zero pressure will be
 - a). When molecular momentum of the system becomes zero
 - c). At temperature -273 k

- b). At sea level
- d). At the centre of the earth
- 5. According to kelvin planck statement of 2nd law of thermodynamics.
 - a). It is impossible to construct an engine working on a cyclic process whose main purpose is to convert heat energy into the work
 - b). It is possible to construct an engine working on a cyclic process whose sole purpose is to convert heat into work
 - c) Both of the above

- d). None of the above
- 6. The entropy of an isolated system can never _____
 - a) increase

b) decrease


c) be zero

- d) none of the mentioned
- 7. Maxwell's thermodynamic relations are valid for
 - a) Closed system only

- b) Only reversible process
- c). All processes of thermodynamics
- d) A thermodynamic system in equilibrium

8. Liq		temp b). 2.99K	erature is called heliur c). 3.19K	n II d). 1.43K
9. The	efficiency of a reve	ersible engine		
	b) depends uponc) depends upond) depends upon	both the temperatu	<u> </u>	
10. Ph	ase space isa). six dimensionac). one dimensiona	1	b). three dimensional d). two dimensional	
11. He 12. Se 13. Th equ 14. Al 15. Th ANSW 16. Wi 17. Sta 18. Wi 19. Wi	cond law of thermo e entropy of an isol uilibrium. I the cells of the pha	m is taken to bedynamics is sometiated system always ase space are not of ce is lowered when on effect? ermodynamics - Clapeyron latent on between entropy	imes called as s and becomes a f size. there is increase in theat equation.	at the state of
21. He		QUESTIONS a heat engine from		(5x6=30) 80 MW. If the rate of waste al efficiency for this heat

...4

- 22. A refrigerator pumps heat at 0^{0} C and emits it into the environment at 20^{0} C, receiving instead of work additional heat at 100^{0} C. How much heat must the refrigerator at least receive at 100^{0} C for every joule of heat absorbed at 0^{0} C?
- 23. A quantity of air at 27^oC and atmospheric pressure is suddenly compressed to half its original volume, find the final pressure and temperature.
- 24. Prove that $C_p C_v = R$ for a perfect gas, using Maxwell's thermodynamical relations.
- 25. The efficiency of a Carnot's cycle is 1/6. If on reducing the temperature of the sink by 65^oC the efficiency becomes 1/3, find the initial and final temperatures between the cycle is working.
- 26. What are micro and macro states explain.
- 27. Calculate the change in entropy when 2 kg of ice at 0° C is converted into steam at 100° C.

SECTION C

ANSWER ANY THREE QUESTION

(3x15=45)

- 28. Derive Planck's radiation formula. Show that Rayleigh-Jeans law and Wien's law are special case of Planck's law.
- 29. Describe Carnot's reversible heat engine. Deduce an expression for its efficiency.
- 30. Show that entropy remains constant in reversible process but increase in irreversible process.
- 31. Derive Maxwell's thermodynamical relations.
- 32. What are ensembles? Derive the Maxwell-Boltzmann distribution law for the molecules of a gas.
