STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (FOR candidates admitted from the academic year 2019-2020 & thereafter) SUBJECT CODE : 19PH/MC/MP44 B.Sc. DEGREE EXAMINATION – APRIL 2023 BRANCH III – PHYSICS FOURTH SEMESTER

COURSE: MAJOR COREPAPER: MATHEMATICAL PHYSICSTIME: 3 HOURS

MAX. MARKS : 100

(10 x 1 = 10)

SECTION - A

ANSWER ALL QUESTIONS: I CHOOSE THE CORRECT ANSWER:

- The magnitude of ______ at any point is the rate of change of the function Φ with distance along the normal to the level surface at the point and is directed along unit vector.
 - (a) Curl Φ (b) grad Φ (c) div Φ (d) curl.grad Φ
- 2. Grad $(\frac{1}{r})$ is equal to _____. (a) $(\frac{\vec{r}}{r2})$ (b) $1/r^2$ (c) $-\vec{r}/r^2$ (d) $-\vec{r}/r^3$
- 3. The divergence of a vector field is always _____.
 (a) a scalar (b) a vector (c) a pseudoscalar (d) a constant
- 4. For a position vector $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, the value of curl $\vec{r} =$ _____. (a) 0 (b) 1 (c) xyz (d) 3
- 5. The Poisson's equation is $\nabla \Phi =$ ____. (a) ρ/ϵ_0 (b) ρ^2/ϵ_0 (c) $-\rho/\epsilon_0$ (d) div(ρ/ϵ_0)
- 6. If the line integral $\int \vec{A} \cdot d\vec{r}$ is independent of path, then the vector field $\vec{A}(x, y, z)$ is said to be a ______ field.
 - (a) Conservative (b) non-conservative (c) lamellar (d) solenoidal
- In an L-R series circuit, if 'I' is the current flowing in the circuit containing resistance R and inductance L in series with voltage source E, then, at any time t, according to voltage law, E = _____.
 - (a) RI L.dI/dt (b) RI + L. dI/dt (c) q + L. dI/dt (d) LR + q. dI/dt
- 8. In a damped LCR circuit, when the roots are equal, the condition is called _____.
 (a) Overdamped (b) underdamped (c) critically damped (d) oscillatory
- 9. The difference of a complex number and its conjugate is _____.
 (a) A real number (b) an imaginary number (c) an indefinite number (d) zero
- 10. Any function which satisfies the Laplace's equation is known as ______ function.(a) Harmonic (b) analytic (c) holomorphic (c) orthogonal

II FILL IN THE BLANKS:

- $(5 \times 1 = 5)$
- 11. If \vec{r} and \vec{s} are functions of x, y and z, then $\partial/\partial x$ ($\vec{r} \times \vec{s}$) = _____.
- 12. Complete the vector identity: curl $(\Phi \vec{A}) =$ _____.

....2

- /2/
- 13. According to Gauss divergence theorem, $\iint_{s} \vec{A} \cdot ds =$ _____.
- 14. The general solution of a linear differential equation with constant coefficients is the sum of particular integral and _____.
- 15. The value of i^8 is _____.

III. ANSWER BRIEFLY

- 16. Differentiate scalar and vector point function.
- 17. Write Gauss's law in differential form.
- 18. State Green's theorem.
- 19. Differentiate between damped and forced oscillations.
- 20. What is argand diagram?

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 21. A particle moves along the curve $x = 2t^2$, $y = t^2-4t$, z = 3t-5, where t is the time. Find component of its velocity and acceleration at t = 1 in the direction $\vec{i} - 3\vec{j} + 2\vec{k}$.
- 22. If a rigid body is in motion, show that the curl of its linear velocity at any point gives twice its angular velocity.
- 23. Find the work done in moving a particle in the force field $\vec{F} = 3x^2\vec{i} + (2xz-y)\vec{j} + z\vec{k}$ along the curve defined by $x^2 = 4yj$ and $3x^2 = 8z$ from x = 0 to x = 2.
- 24. An inductor of H henry and a capacitor of C farad are in series with a generator of E volt. At t = 0, the charge on the capacitor and the current are zero. Find the charge on the capacitor at any time t>0, if $E = E_0$ is a constant.
- 25. Find the modulus and principal argument of complex number, $(1 + \cos \alpha + i.\sin \alpha)$, where $0 < \alpha < \pi/2$.
- 26. Prove that (i) div.curl A = 0, and (ii) curl.grad Φ = 0.
- 27. Derive the expression for equation of motion of a spring in free oscillation.

SECTION – C

ANSWER ANY THREE QUESTIONS:

- 28. What is Newton's law of gravitation? Derive the expression for gravitational potential and show that the intensity of gravitational field at a point is equal to negative gradient of potential.
- 29. Write the Maxwell's equations in differential form. Show that electric potential satisfies the Poisson's equation and magnetic potential satisfies the Laplace equation.
- 30. Derive the Euler's equation of motion in vector form using Gauss divergence theorem.
- 31. Find the equation of motion of a body falling vertically under gravity and encounters resistance of the atmosphere. If the resistance varies as its velocity, show that the equation of motion is given by du/dt = g ku, where u is the velocity and k is a constant. Also show that as 't' increases, u approaches the value g/k.
- 32. Derive the Cauchy-Reimann equations for a function f(z) to be analytic. Determine whether the function $\frac{1}{z}$ is analytic or not.

$(5 \ge 2 = 10)$

 $(5 \times 6 = 30)$

 $(3 \times 15 = 45)$