STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2019 – 2020 and thereafter)

SUBJECT CODE : 19PH/PC/MP14

M.Sc., DEGREE EXAMINATION NOVEMBER 2022 PHYSICS FIRST SEMESTER

COURSE	:	MAJOR CORE
PAPER	:	MATHEMATICAL PHYSICS - I
TIME	:	3 HOURS

SECTION - A

ANSWER ALL QUESTIONS:

- 1. What do you mean by interpolation and extrapolation?
- 2. Find y(0.1) for y' = $\frac{x-y}{2}$, y(0) = 1 with step length 0.1 using Runge –Kutta method of second order.
- 3. Verify Cauchy Riemann equations for the following function f(z) = az + b.
- 4. Find the pole of the following function $\frac{z}{(z-1)(z-2)^2}$
- 5. What is unitary space? Give example.
- 6. Define isomorphism of vector space.
- 7. What is Einstein's summation convention?
- 8. If A_{ij} is antisymmetric tensor, find the component A_{11} .
- 9. Define Beta function.
- 10. What is Hankel function?

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. Using Newton Raphson method, obtain a root of $x^3-3x-5 = 0$ to three decimals
- 12. Using 4 segment Simpsons 1/3 rule to approximate the distance covered by a rocket in meters from t=8s to t = 30s given by

$$\mathbf{x} = \int_{8}^{30} 2000 \ln\left(\frac{14000}{14000 - 2100t}\right) - 9.8t. \, dt$$

- 13. Prove that the function $u = 2x x^3 + 3xy^2$ satisfies Laplace equation and determine the imaginary part of the corresponding regular function u+iv.
- 14. Expand f(z) = Sin z into a Taylor series about $z = \pi/4$
- 15. Derive Fourier's equation of heat flow in solids.
- 16. Obtain moment of inertia in tensor form.
- 17. By using Rodrigue's formula, find first four Legendre polynomials.

SECTION - C

ANSWER ANY THREE QUESTIONS:

- 18. Find the numerical solution of $\frac{dy}{dx} = x + y$, from x=0 to 0.2 by modified Euler's method for h=0.05 with the initial condition $x_0 = 0$, $y_0 = 1$.
- 19. (a) State and prove Cauchy's integral formula. (10 mark)
 - (b) Evaluate $\int_{C}^{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle |z| = 3, using Cauchy's integral formula.

(10x3=30)

MAX. MARKS : 100

(3x15=45)

(5x5=25)

20. Use Gram Schmidt orthogonal process to construct an orthonormalization to the following basis for \mathbb{R}^3

$$\mathbf{B} = \{(1,1,0), (1,2,0), (0,1,2)\}$$

- 21. (a) If A^μ and B_μ are any two vectors, one contravariant and the other covariant, then prove that A^μ B_μ is invariant.
 (b) A covariant tensor has components xy, 2y -z², xz in rectangular coordinates. Find its covariant components in spherical coordinates
- 22. Obtain the complete solution for Bessel differential equation.
