SUBJECT CODE : 19PH/PC/MP14

\section*{M.Sc., DEGREE EXAMINATION NOVEMBER 2022
 PHYSICS
 FIRST SEMESTER
 | COURSE | $:$ | MAJOR CORE |
| :--- | :--- | :--- |
| PAPER | $:$ | MATHEMATICAL PHYSICS - I |} TIME : 3 HOUR

SECTION - A

ANSWER ALL QUESTIONS:

1. What do you mean by interpolation and extrapolation?
2. Find $\mathrm{y}(0.1)$ for $\mathrm{y}^{\prime}=\frac{x-y}{2}, \mathrm{y}(0)=1$ with step length 0.1 using Runge - Kutta method of second order.
3. Verify Cauchy - Riemann equations for the following function $f(z)=a z+b$.
4. Find the pole of the following function $\frac{z}{(z-1)(z-2)^{2}}$
5. What is unitary space? Give example.
6. Define isomorphism of vector space.
7. What is Einstein's summation convention?
8. If A_{ij} is antisymmetric tensor, find the component A_{11}.
9. Define Beta function.
10. What is Hankel function?

SECTION - B

ANSWER ANY FIVE QUESTIONS:

11. Using Newton Raphson method, obtain a root of $x^{3}-3 x-5=0$ to three decimals
12. Using 4 segment Simpsons $1 / 3$ rule to approximate the distance covered by a rocket in meters from $t=8 \mathrm{~s}$ to $\mathrm{t}=30$ s given by

$$
x=\int_{8}^{30} 2000 \ln \left(\frac{14000}{14000-2100 t}\right)-9.8 t . d t
$$

13. Prove that the function $u=2 x-x^{3}+3 x y^{2}$ satisfies Laplace equation and determine the imaginary part of the corresponding regular function $u+i v$.
14. Expand $\mathrm{f}(\mathrm{z})=\operatorname{Sin} \mathrm{z}$ into a Taylor series about $\mathrm{z}=\pi / 4$
15. Derive Fourier's equation of heat flow in solids.
16. Obtain moment of inertia in tensor form.
17. By using Rodrigue's formula, find first four Legendre polynomials.

SECTION - C

ANSWER ANY THREE QUESTIONS:

18. Find the numerical solution of $\frac{d y}{d x}=x+y$, from $\mathrm{x}=0$ to 0.2 by modified Euler's method for $\mathrm{h}=0.05$ with the initial condition $\mathrm{x}_{0}=0, \mathrm{y}_{0}=1$.
19. (a) State and prove Cauchy's integral formula.
(b) Evaluate $\int_{C} \cdot \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$, using Cauchy's integral formula.
20. Use Gram Schmidt orthogonal process to construct an orthonormalization to the following basis for R^{3}

$$
B=\{(1,1,0),(1,2,0),(0,1,2)\}
$$

21. (a) If A^{μ} and B_{μ} are any two vectors, one contravariant and the other covariant, then prove that $A^{\mu} B_{\mu}$ is invariant.
(b) A covariant tensor has components $x y, 2 y-z^{2}, x z$ in rectangular coordinates. Find its covariant components in spherical coordinates
22. Obtain the complete solution for Bessel differential equation.
