STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2019-20 \& thereafter)

SUBJECT CODE : 19MT/PE/NC15

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : ELECTIVE
 PAPER : NUMBER THEORY AND CRYPTOGRAPHY TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

1. Find the g.c.d $(1547,560)$.
2. Define generator of a Finite Field F_{q}.
3. Define digraph transformation.
4. Define trapdoor function.
5. Define a pseudoprime.

> SECTION - B

ANSWER ANY FIVE QUESTIONS:
6. State and prove Fermat's Little theorem.
7. Use repeated squaring method to find $38^{75} \bmod (103)$.
8. Show that for any $q=p^{f}$ the polynomial $X^{q}-X$ factors in $F p[x]$ into the product of all monic irreducible polynomials of degrees d dividing f.
9. In the 27 letter alphabet (with blank $=26$, key $\mathrm{a}=13, \mathrm{~b}=9$) encipher the message "HELP ME".
10. Solve $2 x+3 y \equiv 1 \bmod 26$

$$
7 x+8 y \equiv 2 \bmod 26
$$

11. How do you send a signature in RSA.
12. Check whether 91 is a pseudoprime to the base 3 .

SECTION - C

ANSWER ANY THREE QUESTIONS:
$(3 \times 20=60)$
13. a. Estimate the time required to convert a k - bit integer ' n ' to its representation in base ' b ' where b might be very large.
b. Find the highest power of p which exactly divides $n!$.
14. State and prove Quadratic law of Reciprocity using Legendre symbol.
15. a. In a long string of ciphertext which was encrypted by means of an affine map on single letter message units in the 26 - letter alphabet, you observe that the most frequently occurring letters are "Y" and "V", in that order.Assuming that those ciphertext message units are the encryption of "E" and "T", respectively , read the message "QAOOYQQEVHEQV".
b. Working in a 26 - letter alphabet, use the matrix of $\mathrm{A}=\left(\begin{array}{ll}2 & 3 \\ 7 & 8\end{array}\right)$ to decipher "FWMDIQ".
16. a. Describe the basic properties of public key cryptosystem.
b. Write a short note on i) Hash function
ii) Key exchange.
17. a. Show that every Carmichael number must be a product of 3 distinct primes.
b. Factor 4087 where $f(x)=x^{2}+x+1, x_{0}=2$ using rho - method.

