STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20)

SUBJECT CODE: 19MT/PC/RA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE : CORE

PAPER : REAL ANALYSIS

TIME : 3 HOURS MAX. MARKS : 100

- 1. Define accumulation point and find the accumulation points of set of integers.
- 2. Define function of a bounded variation and give an example of a function which is bounded but not of bounded variation.
- 3. Give an example of a function which is not Riemann-Stieltjes integrable.
- 4. Write the Jacobian matrix for total derivative of function $\overline{f}: S \subset \mathbb{R}^n \to \mathbb{R}^m$
- 5. Define stationary point and saddle point

SECTION – B $(5 \times 6 = 30)$ ANSWER ANY FIVE QUESTIONS

- 6. Show that a set S is closed in \mathbb{R}^n if and only if it contains all its adherent points.
- 7. State and Prove Cantor intersection theorem.
- 8. Let f be a function of bounded variation on [a,b]. Let $V(x) = V_f(a,x)$ for $a < x \le b$ and V(a) = 0. Show that V and V f are increasing functions on [a,b].
- 9. Establish the linear property for two integrators with respect to Riemann-Stieltjes integrals
- 10. State and prove the sufficient conditions for existence of Riemann-Stieltjes integral
- 11. State and prove the mean value theorem for a function of several variables.
- 12. State and prove the sufficient condition for a function f to have a local extremum at a point c

- 13. (a) State and Prove Lindelof covering theorem. (10)
 - (b) Let S be a subset of R^n . Show that if any infinite subset of S has an accumulation point in S, then S is compact. (10)
- 14. (a) If f is a bounded variation on [a, b] and $c \in (a, b)$ then show that $V_f(a, b) = V_f(a, c) + V_f(c, b) \tag{10}$
 - (b) State and prove Integration by Parts formula for Riemann-Stieltjes integrals (10)
- 15. (a) Assume that $\alpha \uparrow \text{on}[a,b]$. Show that the following three statements are equivalent
 - (i) $f \in R(\alpha)$ on [a,b]
 - (ii) satisfies Riemann's condition with respect to α on [a,b]

(iii)
$$I(f,\alpha) = I(f,\alpha)$$
 (15)

- (b) Assume that $\alpha \uparrow$ on [a,b]. If $f \in R(\alpha)$ on [a,b], show that $f^2 \in R(\alpha)$ on [a,b] (5)
- 16. (a) State and prove the sufficient conditions for equality of mixed partial derivatives of function of several variables \overline{f} at a given point \overline{c} . (15)
 - (b) Justify with an example of a function whose mixed partial derivatives exist a given point but they are unequal. (5)
- 17. State and prove Inverse function theorem

