STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2019-20 and thereafter)

SUBJECT CODE : 19MT/PC/PS34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : CORE

PAPER : PROBABILITY AND STOCHASTIC PROCESSES
TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

1. State Borel-Cantelli Lemma.
2. Define stochastic process.
3. If i is recurrent and $i \leftrightarrow j$, then j is recurrent.
4. Define continuous - time Markov chain.
5. Define Submartingale and Supermartingale.

SECTION - B

ANSWER ANY FIVE QUESTIONS: $(5 \times 6=30)$
6. At a party n people put their hats in the centre of a room where the hats are mixed together. Each person then randomly selects one. Find mean and variance of X, the number that select their own hat.
7. Let $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ denote the ordered values from a set of n independent uniform $(0, t)$ random variable. Let Y_{1}, Y_{2}, \ldots be independent and identically distributed nonnegative random variables that are also independent of $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$. Then
$P\left\{Y_{1}+\cdots+Y_{k}<\tau_{k}, k=1, \ldots, n \mid Y_{1}+\cdots+Y_{n}=y\right\}$
$=\left\{\begin{array}{ll}1-y / t & 0<y<t \\ 0 & \text { otherwise }\end{array}\right.$.
8. State and prove Limiting probabilities for the Embedded $M / G / 1$ Queue.
9. Consider a Yule process with $X(0)=1$. Let the sum of the ages at time $t, A(t)$, can be expressed as $A(t)=a_{0}+t+\sum_{i=1}^{X(t)-1}\left(t-S_{i}\right)$, where a_{0} is the age at $t=0$ of the initial individual. Compute $E[A(t)]$ condition on $X(t)$.
10. State and prove the Martingale Convergence theorem.
11. In an election, candidate A receives n votes and candidate B receives m votes, where $n>m$. Assuming that all orderings are equally likely, show that the probability that A is always ahead in the count of votes in $(n-m) /(n+m)$.
12. State and prove Kolmogorov's Backward equations.

SECTION - C
 ANSWER ANY THREE QUESTIONS:

13. a) If $\left\{E_{n}, n \geq 1\right\}$ is either an increasing or decreasing sequence of events, then $\lim _{n \rightarrow \infty} P\left(E_{n}\right)=P\left(\lim _{n \rightarrow \infty} E_{n}\right)$.
b) Prove that $\operatorname{Var}(Y)=E[N] \operatorname{Var}(X)+E^{2}[X] \operatorname{Var}(N)$.
14. Derive the differential equation $P_{n}(t)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}$.
15. a) Consider a gambler who at each play of the game has probability p of winning 1 unit and probability $q=1-p$ of losing 1 unit. Assuming successive plays of the game are independent, what is the probability that, starting with i units, the gambler's fortune will reach N before reaching 0 .
b) Prove that
(i) if $p \geq 1 / n$, then $\overline{\prod_{i}} \leq \prod_{i}$ for all i.
(ii) if $p \leq 1 / n$, then $\overline{\prod_{i}} \geq \prod_{i}$ for all i. $(15+5)$
16. Determine the limiting probabilities for a birth and death process.
17. State and prove Azuma's Inequality for Martingales.

analanalah

