STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20 and thereafter)

SUBJECT CODE: 19MT/PC/PS34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : CORE

PAPER : PROBABILITY AND STOCHASTIC PROCESSES

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 1. State Borel-Cantelli Lemma.
- 2. Define stochastic process.
- 3. If *i* is recurrent and $i \leftrightarrow j$, then *j* is recurrent.
- 4. Define continuous time Markov chain.
- 5. Define Submartingale and Supermartingale.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

- 6. At a party *n* people put their hats in the centre of a room where the hats are mixed together. Each person then randomly selects one. Find mean and variance of *X*, the number that select their own hat.
- 7. Let $\tau_1, \tau_2, ..., \tau_n$ denote the ordered values from a set of n independent uniform (0, t) random variable. Let $Y_1, Y_2, ...$ be independent and identically distributed nonnegative random variables that are also independent of $\{\tau_1, \tau_2, ..., \tau_n\}$. Then

$$\begin{split} &P\{Y_1+\dots+Y_k<\tau_k, k=1,\dots,n|Y_1+\dots+Y_n=y\}\\ &= \begin{cases} 1-y/t & 0< y< t\\ 0 & otherwise \end{cases}. \end{split}$$

- 8. State and prove Limiting probabilities for the Embedded M/G/1 Queue.
- 9. Consider a Yule process with X(0) = 1. Let the sum of the ages at time t, A(t), can be expressed as $A(t) = a_0 + t + \sum_{i=1}^{X(t)-1} (t S_i)$, where a_0 is the age at t = 0 of the initial individual. Compute E[A(t)] condition on X(t).
- 10. State and prove the Martingale Convergence theorem.

- 11. In an election, candidate A receives n votes and candidate B receives m votes, where n > m. Assuming that all orderings are equally likely, show that the probability that A is always ahead in the count of votes in (n m)/(n + m).
- 12. State and prove Kolmogorov's Backward equations.

13. a) If $\{E_n, n \ge 1\}$ is either an increasing or decreasing sequence of events,

then
$$\lim_{n\to\infty} P(E_n) = P\left(\lim_{n\to\infty} E_n\right)$$
.
b) Prove that $Var(Y) = E[N]Var(X) + E^2[X]Var(N)$. (10 + 10)

- 14. Derive the differential equation $P_n(t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$.
- 15. a) Consider a gambler who at each play of the game has probability p of winning 1 unit and probability q = 1 p of losing 1 unit. Assuming successive plays of the game are independent, what is the probability that, starting with i units, the gambler's fortune will reach N before reaching 0.
 - b) Prove that

(i) if
$$p \ge 1/n$$
, then $\overline{\prod_i} \le \prod_i$ for all i .
(ii) if $p \le 1/n$, then $\overline{\prod_i} \ge \prod_i$ for all i . (15 + 5)

- 16. Determine the limiting probabilities for a birth and death process.
- 17. State and prove Azuma's Inequality for Martingales.