STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20 and thereafter)

SUBJECT CODE: 19MT/PC/PD34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : CORE

PAPER : PARTIAL DIFFERENTIAL EQUATIONS

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 1. Write the three classes of integrals of Partial differential equation.
- 2. Classify the following differential equation.

$$(1+x^2)u_{xx} + (1+y^2)u_{yy} + xu_x + yu_y = 0.$$

- 3. State the Dirichlet Problem of a rectangle.
- 4. Define Dirac delta function.
- 5. What is wave function?

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

- 6. Find the general solution of the differential equation $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$.
- 7. Find a complete integral of the equation $p^2x + q^2y = z$.
- 8. Derive the Laplace Equation.
- 9. Solve the one-dimensional diffusion equation in the region $0 \le x \le \pi, t \ge 0$, subject to the conditions (i) T remains finite as $t \to \infty$ (ii) T = 0, if x = 0 and π for all t

(iii)
$$t = 0, T = \begin{cases} x, & 0 \le x \le \pi/2 \\ \pi - x, \frac{\pi}{2} \le x \le \pi \end{cases}$$

- 10. Derive the D'Alembert's solution for one-dimensional wave equation.
- 11. Derive the Poisson equation.
- 12. A uniform rod of length L whose surface is thermally insulted is initially at temperature $\theta = \theta_0$. At time t = 0, one end is suddenly cooled to $\theta = 0$ and subsequently maintained at this temperature; the other end remains thermally insulated. Find the temperature distribution $\theta(x, t)$.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 20 = 60)$

- 13. (a) Find the integral surface of the linear partial differential equation $x(y^2+z)p - y(x^2+z)q = (x^2-y^2)z$ which contains the straight line x + y = 0, z = 1.
 - (b) Find the solution of the equation $z = \frac{1}{2}(p^2 + q^2) + (p - x)(q - y)$ which passes through the x-axis.
- 14. (a) Find a complete integral of the partial differential equation $(p^2 + q^2)x = pz$ and deduce the solution which passes through the curve x = 0, $z^2 = 4y$
 - (b) Transform the following differential equation to a canonical form $u_{xx} + 2u_{xy} + 4u_{yy} + 2u_x + 3u_y = 0.$
- 15. (a) Discuss the Neumann problem for a rectangle and find its solution.
 - (b) Discuss the Exterior Dirichlet problem for a circle and find its solution.
- 16. (a) Let f(t) be any continuous function. Then prove that $\int_{-\infty}^{\infty} \delta(t-a)f(t)dt = f(a).$
 - (b) Find the solution of the one-dimensional diffusion equation satisfying the following BCs:
 - (i) T is bounded as $t \to \infty$
- (ii) $\left[\frac{\partial T}{\partial x}\right]_{x=0} = 0$, for all t
- (iii) $\left[\frac{\partial T}{\partial x}\right]_{r=a} = 0$, for all t
- (iv) T(x, 0) = x(a x), 0 < x < a.
- 17. (a) Solve the following initial value problem of the wave equation (Cauchy problem), described by the inhomogeneous wave equation

PDE: $u_{tt} - c^2 u_{xx} = f(x, t)$ subject to the initial conditions $u(x,0) = \eta(x); \ u_t(x,0) = v(x).$

- (b) Obtain the solution of the wave equation $u_{tt} = c^2 u_{xx}$ under the following conditions:
 - (i) u(0,t) = u(2,t) = 0
- (ii) $u(x,0) = sin^3(\frac{\pi x}{2})$ (iii) $u_t(x,0) = 0$

