STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted during the academic year 2019-20 and thereafter)SUBJECT CODE : 19MT/PC/PD34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : CORE
PAPER : PARTIAL DIFFERENTIAL EQUATIONS TIME : 3 HOURS

MAX. MARKS : 100
SECTION - A

ANSWER ALL THE QUESTIONS:

1. Write the three classes of integrals of Partial differential equation.
2. Classify the following differential equation.

$$
\left(1+x^{2}\right) u_{x x}+\left(1+y^{2}\right) u_{y y}+x u_{x}+y u_{y}=0 .
$$

3. State the Dirichlet Problem of a rectangle.
4. Define Dirac delta function.
5. What is wave function?

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. Find the general solution of the differential equation $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z$.
7. Find a complete integral of the equation $p^{2} x+q^{2} y=z$.
8. Derive the Laplace Equation.
9. Solve the one-dimensional diffusion equation in the region $0 \leq x \leq \pi, t \geq 0$, subject to the conditions (i) T remains finite as $t \rightarrow \infty \quad$ (ii) $T=0$, if $x=0$ and π for all t (iii) $t=0, T=\left\{\begin{array}{l}x, 0 \leq x \leq \pi / 2 \\ \pi-x, \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$.
10. Derive the D'Alembert's solution for one-dimensional wave equation.
11. Derive the Poisson equation.
12. A uniform rod of length L whose surface is thermally insulted is initially at temperature $\theta=\theta_{0}$. At time $t=0$, one end is suddenly cooled to $\theta=0$ and subsequently maintained at this temperature; the other end remains thermally insulated. Find the temperature distribution $\theta(x, t)$.

SECTION - C

ANSWER ANY THREE QUESTIONS:

$(3 \times 20=60)$
13. (a) Find the integral surface of the linear partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line $x+y=0, z=1$.
(b) Find the solution of the equation $z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y)$ which passes through the x -axis.
14. (a) Find a complete integral of the partial differential equation $\left(p^{2}+q^{2}\right) x=p z$ and deduce the solution which passes through the curve $x=0, z^{2}=4 y$
(b) Transform the following differential equation to a canonical form $u_{x x}+2 u_{x y}+4 u_{y y}+2 u_{x}+3 u_{y}=0$.
15. (a) Discuss the Neumann problem for a rectangle and find its solution.
(b) Discuss the Exterior Dirichlet problem for a circle and find its solution.
16. (a) Let $f(t)$ be any continuous function. Then prove that $\int_{-\infty}^{\infty} \delta(t-a) f(t) d t=f(a)$
(b) Find the solution of the one-dimensional diffusion equation satisfying the following BCs:
(i) T is bounded as $t \rightarrow \infty$
(ii) $\left[\frac{\partial T}{\partial x}\right]_{x=0}=0$, for all t
(iii) $\left[\frac{\partial T}{\partial x}\right]_{x=a}=0$, for all t
(iv) $T(x, 0)=x(a-x), 0<x<a$.
17. (a) Solve the following initial value problem of the wave equation (Cauchy problem), described by the inhomogeneous wave equation
PDE: $u_{t t}-c^{2} u_{x x}=f(x, t)$ subject to the initial conditions $u(x, 0)=\eta(x) ; u_{t}(x, 0)=v(x)$.
(b) Obtain the solution of the wave equation $u_{t t}=c^{2} u_{x x}$ under the following conditions:
(i) $u(0, t)=u(2, t)=0$
(ii) $u(x, 0)=\sin ^{3}\left(\frac{\pi x}{2}\right)$
(iii) $u_{t}(x, 0)=0$

