STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2019-20 \& thereafter)

SUBJECT CODE: 19MT/PC/OD14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : CORE
PAPER : ORDINARY DIFFERENTIAL EQUATIONS TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A
 $(5 \times 2=10)$
 ANSWER ALL THE QUESTIONS

1. Determine whether the functions $\phi_{1}(x)=\cos x, \phi_{2}(x)=\sin x$ are linearly independent on $-\infty<x<\infty$
2. Define Fundamental matrix.
3. Find the singular points of the equation $t x^{\prime \prime}+4 x=0$.
4. Define Lipschitz condition.
5. Explain Sturm-Liouville problem.

SECTION - B
$(5 \times 6=30)$
ANSWER ANY FIVE QUESTIONS
6. Compute the Wronskian of $\phi_{1}(x)=1 \phi_{2}(x)=\cos x$ and $\phi_{3}(x)=\sin x$
7. Determine a fundamental matrix for $x^{\prime}=A x$, where $A=\left[\begin{array}{cc}3 & -2 \\ -2 & 3\end{array}\right]$
8. Show that $\int_{-1}^{1} P_{n}^{2}(x) d x=\frac{2}{2 n+1}$
9. Compute the successive approximations $\mathrm{x}_{\mathrm{n}}, \mathrm{n} \geq 0$ for the IVP $x^{\prime}=-x, x(0)=1, t \geq 0$
10. Find the eigenvalues and eigenvectors of the BVP $x^{\prime \prime}+\lambda x=0,0<t \leq \pi \quad, x^{\prime}(0)=0, x^{\prime}(\pi)=0$
11. Show that $x^{1 / 2} J_{1 / 2}(x)=\frac{\sqrt{2}}{\Gamma\left(\frac{1}{2}\right)} \sin x$
12. Prove that a solution matrix Φ of $X^{\prime}=A(t) X, t \in I$ on I is a fundamental matrix of $x^{\prime}=A(t) x, t \in I$ on I if and only if $\operatorname{det} \Phi \neq 0$ for $t \in I$

SECTION - C

$(3 \times 20=60)$

ANSWER ANY THREE QUESTIONS

13. (a) If x_{t}, x_{2} are linearly independent solutions of the equation $\mathrm{L}(\mathrm{x})=0$ on I then prove that Wronskian of x_{1} and x_{2} namely $W\left[x_{1}(t), x_{2}(t)\right]$ is never zero on I.
(b) Suppose that z_{1} is a solution of $L(y)=d_{1}$ and that z_{2} is a solution of $L(y)=d_{2}$. Then show that $z_{1}+z_{2}$ is a solution of the equation $L(y)(t)=d_{1}(t)+d_{2}(t)$.
14. (a) If $\Phi(t), t \in I$ be a fundamental matrix of the system $x^{\prime}=A x$ such that $\Phi(0)=E$, where A is a constant matrix. Here E denote the identity matrix then show that Φ satisfies $\Phi(t+s)=\Phi(t) \Phi(s)$ for all values of t and $s \in R$
(b) Consider the system $x^{\prime}=A x+b(t)$, where $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right]$ and for $t>0$,

$$
\begin{aligned}
& b(t)=\left[\begin{array}{c}
e^{t} \\
e^{-t}
\end{array}\right] \text {. Show that } \Phi(t)=\left[\begin{array}{cc}
e^{3 t} & 2 t e^{3 t} \\
0 & e^{3 t}
\end{array}\right] \text { is a fundamental matrix of } \\
& x^{\prime}=A x .
\end{aligned}
$$

15. Compute the indicial polynomial and their roots for the equation $x^{2} y^{\prime \prime}+\left(x+x^{2}\right) y^{\prime}-y=0$.
16. State and prove Picard's theorem.
17. If $G(t, s)$ be Green's function then prove that $x(t)$ is a solution of $L(x)+f(t)=0, a \leq t \leq b$
if and only if $x(t)=\int_{a}^{b} G(t, s) f(s) d s$

hachachach

