STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019 – 20 and thereafter)

SUBJECT CODE : 19MT/PC/FA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: CORE
PAPER	: FUNCTIONAL ANALYSIS
TIME	: 3 HOURS

MAX. MARKS : 100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

 $(5 \times 6 = 30)$

- 1. State the Jensen's inequality.
- 2. State the closed graph theorem
- 3. Define the "Dual" of a space *X*.
- 4. State the parallelogram law for inner products on a liner space X.
- 5. Define "Normal" and "Self adjoint" operators.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 6. Let X be a normal space, If E_1 is open in X and $E_2 \subset X$ then prove $E_1 + E_2$ is open in X.
- 7. State and prove Hahn Banach extension theorem.
- 8. Let X be a separable normed space. Then prove that every bounded sequence in X' has a weak convergent subsequence.
- 9. Let X be a normal space and $A \in BL(X)$. Then prove that A is invertible if and only if A is bounded below and surjective.
- 10. State and prove the Schwarz inequality for inner products on a linear space X.
- 11. Let *H* be an Hilbert space and $A, B \in BL(H)$ if *A* and *B* are normal such that *A* commutes with B^* and *B* commutes with A^* then prove that A + B and *AB* are normal.
- 12. State and prove Bessel's inequality for countable orthonormal sets in an inner product space *X*.

...2

SECTION – CANSWER ANY THREE QUESTIONS: $(3 \times 20 = 60)$

- 13. Let *X* be a normal space. Then prove that the following statements are equivalent.
 - (i) Every closed and bounded subset of *X* is compact.
 - (ii) the subset $\{x \in X : ||x|| \le 1\}$ of X is compact
 - (iii) *X* is finite dimensional.
- 14. State and prove open mapping theorem.
- 15. Let X be normed space and Let E be a suspect of X then E is bounded in X if and only if F(E) is bounded in K for every $f \in in X'$, Where X' is dual of normed space X.
- 16. State and prove Gram Schmidt orthonormalization process.
- 17. Let *H* be a Hilbert space and $A, B \in BL(H)$
 - (a) If *A* and *B* are self adjoint then prove *A* + *B* is self adjoint. Also prove *AB* is self adjoint if *A* and *B* are commute.
 - (b) Let (A_n) be a sequence in BL(H) and A ∈ BL(H) such that ||A_n A|| → 0 as n → ∞. If each A_n is self-adjoint, unitary or normal then prove that A is self-adjoint, unitary or normal respectively.
