STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2019-20)
SUBJECT CODE : 19MT/PC/AA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2022
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : CORE
PAPER : ABSTRACT ALGEBRA
TIME : 3 HOURS MAX. MARKS : 100

SECTION - A
 $(5 \times 2=10)$
 ANSWER ALL QUESTIONS

1. List all the conjugate classes in S_{3}. Find the c_{a} 's.
2. Find all the units of the ring $\mathrm{Z}[\mathrm{i}]$, of all Gaussian integers.
3. Prove that the ring $\mathrm{R}[\mathrm{x}]$, of all polynomials in x over an integral domain R is an integral domain.
4. If L is an extension field of a field F of degree 7 and if K is a field such that $F \subseteq K \subseteq L$ then what will be the possible degrees of K over F ?
5. Prove that the symmetric group S_{4} is solvable.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

6. Prove that any group of order $11^{2} .13^{2}$ is abelian.
7. Define a principal ideal in a ring and prove that any ideal in a Euclidean ring is a principal ideal.
8. State and prove the Eisenstein Criterion about the irreducibility of a polynomial with integer coefficients.
9. Define the splitting field of a polynomial $f(x)$ over a field F. Find the splitting field of the polynomial $f(x)=x^{3}-2$ over the field of rational numbers. Also find its degree over Q , the field of rational numbers.
10. Prove that a group G is solvable if and only if $G^{(k)}=(e)$ for some integer k.
11. Let G be a group and suppose that G is the internal direct product of $N_{1}, N_{2}, \ldots, N_{n}$. Let $\mathrm{T}=\mathrm{N}_{1} \times \mathrm{N}_{2} \mathrm{x} \ldots \times \mathrm{N}_{\mathrm{n}}$. Prove that the groups G and T are isomorphic
12. Prove that any element in a Euclidean ring R is either a unit or can be uniquely written as a product of finite number of prime elements of R up to associates.

SECTION - C

$(3 \times 20=60)$

ANSWER ANY THREE QUESTIONS

13. (a) Prove that the number of p -Sylow subgroups in G , for a given prime, is of the form $1+\mathrm{kp}$.
(b) Prove that any two p-Sylow subgroups of a finite group G are conjugates. $(10+10)$
14. (a) Prove that the ring of Gaussian integers is a Euclidean ring.
(b) Define greatest common divisor of any two elements in a commutative ring R. Prove that any two elements a and b in a Euclidean ring R has a greatest common divisor d. Moreover $d=\lambda a+\mu b$, for some $\lambda, \mu \in R$.
15. (a) Define a primitive polynomial. If $f(x)$ and $g(x)$ are primitive polynomials, prove that $f(x) g(x)$ is also a primitive polynomial.
(b) If R is a unique factorization domain, prove that the polynomial ring $\mathrm{R}[\mathrm{x}]$ is also a unique factorization domain, by stating all the results used.
16. (a) If $a, b \in K$ are algebraic over F of degrees m and n respectively and if m and n are relatively prime, prove that $F(a, b)$ is of degree $m n$ over F
(b) Define an algebraic integer and an algebraic number. Also if a rational number r is an algebraic integer, prove that r must be an ordinary integer.
$(10+10)$
17. Prove that K is a normal extension of F if and only if K is a splitting field of a polynomial over F .

achacalala

