STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2019–2020 & thereafter)

SUBJECT CODE: 19CH/PC/MS34

d) 3

M.Sc. DEGREE EXAMINATION, NOVEMBER 2022 BRANCH IV- CHEMISTRY THIRD SEMESTER

COURSE	:	CO	KŁ

PAPER : MOLECULAR SPECTROSCOPY

TIME : 3 HOURS MAX.MARKS :100

SECTION - A (20x1=20)**Answer all the questions:** Choose the correct answer: 1. Which among the following vibrational transition will appear at lowest frequency? b) v = 0 to v = 2c) y = 0 to y = 3a) v = 0 to v = 1d) y = 1 to y = 22. The first excited state of hydrogen molecule is a) $^{1}\Sigma^{+}_{g}$ b) $^{1}\Sigma_{11}^{-}$ c) $^3\Sigma^{-1}$ d) $^3\Sigma^+_{\mu}$ 3. Number of signals that appear in the ¹H-NMR spectrum of cyclohexane at low temperature is a) 1 b) 2 d) 6 c) 3 4. In phenol, the molecular ion is generated by the preferential removal of electron from a) σ – bonding molecular orbital b) π – bonding molecular orbital c) non-bonding molecular orbital d) any one of $\sigma/\pi/n$ on-bonding MOs (no restriction) 5. Index of Hydrogen deficiency for the compound $C_{13}H_{26}O$ is

Fill in the blanks:

a) 0

- 6. The specific selection rule for the Rotational Raman spectra of a diatomic molecule is ------.
- 7. ----- shift is observed in λ_{max} value of Aniline when it is mixed with HCl.
- 8. γ -value of ¹³C-nucleus is roughly ----- times that of γ -value of ¹H nucleus.
- 9. The mass spectrum of a compound shows M⁺ (molecular ion) and M+2 peaks in intensity ratio 1:1. This indicates the presence of ------ in the compound.

c) 2

10. The number of ¹H-NMR signals observed for the compound Bicyclo[2,2,2]octane is ------

State whether True or False:

- 11. Rotational constant associated with first excited vibrational level is greater than ground vibrational level of the ground electronic state.
- 12. n to π^* transition is a symmetry allowed electric dipole transition.
- 13. DEPT is an NMR method used to detect the presence of Chlorine, Bromine and Iodine atom in a molecule.

- 14. Mass spectrum of a mononuclear metal carbonyls consists of signals with equal spacing of 28units.
- 15. A sharp signal is observed at 3300cm⁻¹ for Aliphatic tertiary amine.

Match the following:

- 16. y = 2 to y = 3
- 17. Low value of transition probability
- 18. ω_e (1-2x_e)
- 19. $\Delta J = -2$
- 20. $\Delta J = +2$

- i) Second overtone transition
- ii) O-branch lines
- iii) S-branch lines
- iv) Second hot transition
- v) Fundamental vibrational transition

SECTION - B

 $(5 \times 8 = 40)$

Answer any FIVE questions:

- 21. The energy separation of ${}^{12}C^{16}O$ rotational energy levels between J=3 and J=9 is 24 cm⁻¹. Calculate the rotational constant of ${}^{13}C^{16}O$ in cm⁻¹.
- 22. Explain the Rovibrational spectra of a Diatomic molecule under invalid Born-Oppenheimer approximation.
- 23. If high resolution electronic spectrum of a diatomic molecule is given, how will you determine the dissociation energy associated with the excited electronic state. Explain.
- 24. Explain the following:
 - a) $H_3PO_2 {}^1H$ -NMR spectra and ${}^{31}P$ -NMR spectra
 - b) $PCl_3F_2 {}^{19}F$ -NMR spectra and ${}^{31}P$ -NMR spectra
- 25. The g-factor of ¹H and ¹³C are 5.6 and 1.4 respectively. For the same value of the magnetic field strength, if ¹H-resonates at 600MHz, calculate at what frequency would ¹³C resonates.
- 26. Predict the Fragmentation pattern for the following compounds from their molecular ion.
 - a) 1-Hexanol
- b) 2-Hexanol
- c) 3-Pentanone and
- d) Nitrobenzene.
- 27. A compound (C₉H₁₀O₂) displays the following spectral data.

IR: 1690 cm⁻¹

 1 H-NMR: δ 2.5 (s, 3H), 3.8 (s, 3H), 6.9 (d, J=8 Hz, 2H), 7.8 (d, J=8 Hz, 2H) ppm

³C-NMR: δ 197, 165, 130, 129, 114, 56, 26 ppm.

Predict the structure of the compound.

SECTION - C

 $(2 \times 20 = 40)$

Answer any TWO questions:

- 28. a) The rotational Raman spectrum of ³⁵Cl₂ shows a series of Stokes lines separated by 0.9752 cm⁻¹. Calculate the bond length of the molecule. The spin of ³⁵Cl is 3/2. Does this influence the intensity/spacing in the rotational Raman spectra? (8 marks)
 - b) How would you distinguish between ortho, para and meta xylenes from proton decoupled ¹³C spectra? (3 marks)
 - c) Explain why the ¹³C chemical shifts span a much larger range than those of protons. (2 marks)
 - d) Sketch the expected $^{31}\text{P-NMR}$ spectrum of HPF $_2$ when a) $J_{P\text{-F}} > J_{P\text{-H}}$ b) $J_{P\text{-H}} > J_{P\text{-F}}$ (7 marks)
- 29. Explain:
 - a) Mc Lafferty Rearrangement (10 marks)
 b) Base peak (2 marks)
 c) Metastable peak (2 marks)
 d) Stevenson's rule (2 marks)
 e) Retro Diels-Alder Cleavage (4 marks)
- 30. a) Derive the energy expression of a a nonrigid diataomic rotor and explain the significance of the centrifugal distortion constant (8 marks)
 - b) The rotational spectrum of ⁷⁹Br¹⁹F shows a series of equidistant lines 0.71433cm⁻¹ apart. Calculate the rotational constant B and hence the moment of inertia and bond length of the molecule. (6 marks)
 - c) Alternate lines of the P and R branches in the rotational vibrational spectrum of acetylene are less intense,.Explain (6 marks)
